X=Polar Axis Y=Z=Equatorial Axis | Y=Polar Axis Z=X=Equatorial Axis | Z=Polar Axis X=Y=Equatorial Axis |
---|---|---|
\(\phi=\arccos(\frac{x}{\sqrt{x^2+y^2+z^2}})=\alpha\) | \(\phi=\arccos(\frac{y}{\sqrt{x^2+y^2+z^2}})=\beta\) | \(\phi=\arccos(\frac{z}{\sqrt{x^2+y^2+z^2}})=\gamma\) |
The value of the Polar Angle \(\phi\) comes out such that \(0\leq \phi \leq \pi\) |
For X-Y Plane (X is Horizontal Axis and Y is Vertical Axis) | |||
---|---|---|---|
\(m\_arctan2\) Function for Counter Clockwize from Positive X Axis via ArcCosine | \(m\_arctan2\) Function for Counter Clockwize from Positive X Axis via ArcSine | \(m\_arctan2\) Function for Clockwize from Positive Y Axis via ArcCosine | \(m\_arctan2\) Function for Clockwize from Positive Y Axis via ArcSine |
if \(x=0\) And \(y=0\) \(\theta=0\) else if \(y\geq0\) \(\theta=\arccos(\frac{x}{\sqrt{x^2+y^2}}) \mod 2\pi\) else if \(y<0\) \(\theta=(\arccos(\frac{-x}{\sqrt{x^2+y^2}}) + \pi) \mod 2\pi\) |
if \(x=0\) And \(y=0\) \(\theta=0\) else if \(x < 0\) \(\theta=(\pi - \arcsin(\frac{y}{\sqrt{x^2+y^2}})) \mod 2\pi\) else if \(y \geq 0\) \(\theta=\arcsin(\frac{y}{\sqrt{x^2+y^2}}) \mod 2\pi\) else if \(y < 0\) \(\theta=(\arcsin(\frac{y}{\sqrt{x^2+y^2}}) + 2\pi)\mod 2\pi\) |
if \(x=0\) And \(y=0\) \(\theta=0\) else if \(x\geq0\) \(\theta=\arccos(\frac{y}{\sqrt{x^2+y^2}})\mod 2\pi\) else if \(x<0\) \(\theta=(\arccos(\frac{-y}{\sqrt{x^2+y^2}}) + \pi)\mod 2\pi\) |
if \(x=0\) And \(y=0\) \(\theta=0\) else if \(y < 0\) \(\theta=(\pi - \arcsin(\frac{x}{\sqrt{x^2+y^2}}))\mod 2\pi\) else if \(x \geq 0\) \(\theta=\arcsin(\frac{x}{\sqrt{x^2+y^2}})\mod 2\pi\) else if \(x < 0\) \(\theta=(\arcsin(\frac{x}{\sqrt{x^2+y^2}}) + 2\pi)\mod 2\pi\) |
For Y-Z Plane (Y is Horizontal Axis and Z is Vertical Axis) | |||
---|---|---|---|
\(m\_arctan2\) Function for Counter Clockwize from Positive Y Axis via ArcCosine | \(m\_arctan2\) Function for Counter Clockwize from Positive Y Axis via ArcSine | \(m\_arctan2\) Function for Clockwize from Positive Z Axis via ArcCosine | \(m\_arctan2\) Function for Clockwize from Positive Z Axis via ArcSine |
if \(y=0\) And \(z=0\) \(\theta=0\) else if \(z\geq0\) \(\theta=\arccos(\frac{y}{\sqrt{y^2+z^2}}) \mod 2\pi\) else (if \(z<0\) \(\theta=(\arccos(\frac{-y}{\sqrt{y^2+z^2}}) + \pi) \mod 2\pi\) |
if \(y=0\) And \(z=0\) \(\theta=0\) else if \(y < 0\) \(\theta=(\pi - \arcsin(\frac{z}{\sqrt{y^2+z^2}})) \mod 2\pi\) else if \(z \geq 0\) \(\theta=\arcsin(\frac{z}{\sqrt{y^2+z^2}}) \mod 2\pi\) else if \(z < 0\) \(\theta=(\arcsin(\frac{z}{\sqrt{y^2+z^2}}) + 2\pi) \mod 2\pi\) |
if \(y=0\) And \(z=0\) \(\theta=0\) else if \(y\geq0\) \(\theta=\arccos(\frac{z}{\sqrt{y^2+z^2}}) \mod 2\pi\) else if \(y<0\) \(\theta=(\arccos(\frac{-z}{\sqrt{y^2+z^2}}) + \pi) \mod 2\pi\) |
if \(y=0\) And \(z=0\) \(\theta=0\) else if \(z < 0\) \(\theta=(\pi - \arcsin(\frac{y}{\sqrt{x^2+z^2}})) \mod 2\pi\) else if \(y \geq 0\) \(\theta=\arcsin(\frac{y}{\sqrt{y^2+z^2}}) \mod 2\pi\) else if \(y < 0\) \(\theta=(\arcsin(\frac{y}{\sqrt{y^2+z^2}}) + 2\pi) \mod 2\pi\) |
For Z-X Plane (Z is Horizontal Axis and X is Vertical Axis) | |||
---|---|---|---|
\(m\_arctan2\) Function for Counter Clockwize from Positive Z Axis via ArcCosine | \(m\_arctan2\) Function for Counter Clockwize from Positive Z Axis via ArcSine | \(m\_arctan2\) Function for Clockwize from Positive X Axis via ArcCosine | \(m\_arctan2\) Function for Clockwize from Positive X Axis via ArcSine |
if \(x=0\) And \(z=0\) \(\theta=0\) else if \(x\geq0\) \(\theta=\arccos(\frac{z}{\sqrt{x^2+z^2}}) \mod 2\pi\) else if \(x<0\) \(\theta=(\arccos(\frac{-z}{\sqrt{x^2+z^2}}) + \pi) \mod 2\pi\) |
if \(x=0\) And \(z=0\) \(\theta=0\) else if \(z < 0\) \(\theta=(\pi - \arcsin(\frac{x}{\sqrt{x^2+z^2}})) \mod 2\pi\) else if \(x \geq 0\) \(\theta=\arcsin(\frac{x}{\sqrt{x^2+z^2}}) \mod 2\pi\) else if \(x < 0\) \(\theta=(\arcsin(\frac{x}{\sqrt{x^2+z^2}}) + 2\pi) \mod 2\pi\) |
if \(x=0\) And \(z=0\) \(\theta=0\) else if \(z\geq0\) \(\theta=\arccos(\frac{x}{\sqrt{x^2+z^2}}) \mod 2\pi\) else if \(z<0\) \(\theta=(\arccos(\frac{-x}{\sqrt{x^2+z^2}}) + \pi) \mod 2\pi\) |
if \(x=0\) And \(z=0\) \(\theta=0\) else if \(x < 0\) \(\theta=(\pi - \arcsin(\frac{z}{\sqrt{x^2+z^2}})) \mod 2\pi\) else if \(z \geq 0\) \(\theta=\arcsin(\frac{z}{\sqrt{x^2+z^2}}) \mod 2\pi\) else if \(z < 0\) \(\theta=(\arcsin(\frac{z}{\sqrt{x^2+z^2}}) + 2\pi) \mod 2\pi\) |