The equation (3) above gives the Equation of the Rotated Hyperbola having Center at Origin
Setting \(b^2\cos^2\theta - a^2\sin^2\theta=\mathbf{A}\), \((b^2 + a^2)\sin2\theta=\mathbf{B}\) and \(b^2 \sin^2\theta - a^2\cos^2\theta=\mathbf{C}\) in equation (3) above we get
Setting \(- (2Ax_c+By_c)=\mathbf{D}\), \(-(2Cy_c+Bx_c)=\mathbf{E}\) and \(A{x_c}^2+C{y_c}^2+Bx_cy_c -a^2b^2=\mathbf{F}\) in equation (5) above we get
\(Ax^2 + Bxy + Cy^2 +Dx +Ey +F=0\) ...(6)
The equation (5) and (6) above give the Implicit Coordinate Equation of the Hyperbola Rotated Counter Clockwise by Angle \(\theta\) with respect to Positive Direction of \(X\) Axis and having Center at \((x_c,y_c)\)
where