Loading [MathJax]/jax/output/CommonHTML/jax.js
mail  mail@stemandmusic.in
    
call  +91-9818088802

Finding Equation of Hyperbola from given 2 Foci and Transverse Axis Length

  1. Given a Hyperbola having Coordinates of Center (xc,yc), Coordinates of 2 Foci (xf1,yf1) and (xf2,yf2) and Length of Transverse Axis L=2a, the Equation of the Hyperbola can be found out as follows

    As per definition of Hyperbola, the Difference of the Distance from 2 Foci to Any Point (x,y) on the Hyperbola is equal to the Length of it's Transverse Axis. Hence

    (xxf1)2+(yyf1)2(xxf2)2+(yyf2)2=L=2a

    (xxf1)2+(yyf1)2=2a+(xxf2)2+(yyf2)2   ...(1)

    Squaring Both Sides of equation (1) above we get

    (xxf1)2+(yyf1)2=4a2+(xxf2)2+(yyf2)2+4a(xxf2)2+(yyf2)2

    4a2+(xxf2)2+(yyf2)2(xxf1)2(yyf1)2=4a(xxf2)2+(yyf2)2   ...(2)

    Squaring Both Sides of equation (2) above we get

    (4a2+(xxf2)2+(yyf2)2(xxf1)2(yyf1)2)2=16a2((xxf2)2+(yyf2)2)

    (4a2+(xxf2)2+(yyf2)2(xxf1)2(yyf1)2)216a2((xxf2)2+(yyf2)2)=0   ...(3)

    Expanding and Simplifying equation (3) above we get

    (4xf12+4xf228xf1xf216a2)x2+(4yf12+4yf228yf1yf216a2)y2+(8xf1yf18xf1yf2+8xf2yf28yf1xf2)xy
    +(16a2xf1+16a2xf24xf134xf23+4xf1xf22+4xf1yf224xf1yf12+4xf2xf12+4xf2yf124xf2yf22)x
    +(16a2yf1+16a2yf24yf134yf23+4yf1yf22+4yf1xf224yf1xf12+4yf2yf12+4yf2xf124yf2xf22)y
    +(16a4+xf14+yf14+xf24+yf248a2xf128a2yf128a2xf228a2yf22+2xf12yf12+2xf22yf222xf12xf222yf12xf222xf12yf222yf12yf22)=0   ...(4)

    The equation (4) above gives the Equation of Hyperbola having Coordinates of 2 Foci at (xf1,yf1) and (xf2,yf2) and Length of Transverse Axis L=2a if L<F, where F is Distance Between 2 Foci.

    Please note that the equation (4) above can also be used for Finding Equation of Ellipse from given 2 Foci and Major Axis Length.
  2. The Hyperbola represented by equation (4) gets converted to an X-Transverse Hyperbola on setting yf1=yf2=yf as given by the following calculations

    (4xf12+4xf228xf1xf216a2)x2+(4yf2+4yf28yfyf16a2)y2+(8xf1yf8xf1yf+8xf2yf8yfxf2)xy
    +(16a2xf1+16a2xf24xf134xf23+4xf1xf22+4xf1yf24xf1yf2+4xf2xf12+4xf2yf24xf2yf2)x
    +(16a2yf+16a2yf4yf34yf3+4yfyf2+4yfxf224yfxf12+4yfyf2+4yfxf124yfxf22)y
    +(16a4+xf14+yf4+xf24+yf48a2xf128a2yf28a2xf228a2yf2+2xf12yf2+2xf22yf22xf12xf222yf2xf222xf12yf22yf2yf2)=0

    (4(xf12+xf222xf1xf2)16a2)x2+(8yf28yf216a2)y2+(16a2xf1+16a2xf24xf134xf23+4xf1xf22+4xf2xf12)x
    +(32a2yf4yf34yf3+4yf3+4yf3)y+(16a4+xf14+xf242xf12xf22+2yf42yf416a2yf28a2(xf12+xf22))=0

    (4(xf1xf2)216a2)x216a2y2+(16a2(xf1+xf2)4xf1(xf12xf22)+4xf2(xf12xf22))x
    +32a2yfy+(16a4+(xf12xf22)216a2yf28a2(xf12+xf22))=0

    (4(xf1xf2)216a2)x216a2y2+(16a2(xf1+xf2)4xf1(xf1xf2)(xf1+xf2)+4xf2(xf1xf2)(xf1+xf2))x
    +32a2yfy+(16a4+((xf1xf2)(xf1+xf2))216a2yf28a2(xf12+xf22))=0   ...(5)

    Now, we know that

    xf1xf2=2c   ...(6)

    (xf1xf2)2=4c2xf12+xf222xf1xf2=4c2xf12+xf22=4c2+2xf1xf2   ...(7)

    Also

    xf1+xf22=xcxf1+xf2=2xc   (where (xc,yc) are Coordinates of Center of Hyperbola) ...(8)

    (xf1+xf2)2=4xc2xf12+xf22+2xf1xf2=4xc2xf12+xf22=4xc22xf1xf2   ...(9)

    Adding equations (7) and (9) we get

    2(xf12+xf22)=4c2+2xf1xf2+4xc22xf1xf22(xf12+xf22)=4(c2+xc2)(xf12+xf22)=2(c2+xc2)   ...(10)

    Now, putting the values of xf1xf2, xf1+xf2 and xf12+xf22 from equations (6), (8) and (10) in equation (5) we get

    (4(2c)216a2)x216a2y2+(16a2(2xc)4xf1(2c)(2xc)+4xf2(2c)(2xc))x+32a2yfy+(16a4+((2c)(2xc))216a2yf28a2(2(c2+xc2)))=0

    (16c216a2)x216a2y2+(32a2xc16xf1cxc+16xf2cxc)x+32a2yfy+(16a4+16c2xc216a2yf216a2xc216a2c2)=0

    16(a2c2)x216a2y2+(32a2xc16cxc(xf1xf2))x+32a2yfy+(16a416a2c2+16c2xc216a2xc216a2yf2)=0

    16(a2c2)x216a2y2+(32a2xc16cxc(2c))x+32a2yfy+(16a2(a2c2)16xc2(a2c2)16a2yf2)=0

    16(a2c2)x216a2y2+(32a2xc32c2xc)x+32a2yfy+(16a2(a2c2)16xc2(a2c2)16a2yf2)=0

    16(a2c2)x216a2y2+32xc(a2c2)x+32a2yfy+(16a2(a2c2)16xc2(a2c2)16a2yf2)=0   ...(11)

    Now, for any Hyperbola a2c2=b2. Substituting it in equation (11) above we get

    16b2x216a2y232b2xcx+32a2yfy16a2b2+16b2xc216a2yf2=0   ...(12)

    Dividing the equation (12) above by 16 on Both Sides we get

    b2x2a2y22b2xcx+2a2yfy+b2xc2a2yf2a2b2=0   ...(13)

    Also for X-Transverse Hyperbola yf=yc. Hence,

    b2x2a2y22b2xcx+2a2ycy+b2xc2a2yc2a2b2=0   ...(14)

    The equation (14) above gives the equation of X-Transverse Hyperbola.
  3. The Hyperbola represented by equation (4) gets converted to an Y-Transverse Hyperbola on setting xf1=xf2=xf as given by the following calculations

    (4xf2+4xf28xfxf16a2)x2+(4yf12+4yf228yf1yf216a2)y2+(8xfyf18xfyf2+8xfyf28yf1xf)xy
    +(16a2xf+16a2xf4xf34xf3+4xfxf2+4xfyf224xfyf12+4xfxf2+4xfyf124xfyf22)x
    +(16a2yf1+16a2yf24yf134yf23+4yf1yf22+4yf1xf24yf1xf2+4yf2yf12+4yf2xf24yf2xf2)y
    +(16a4+xf4+yf14+xf4+yf248a2xf28a2yf128a2xf28a2yf22+2xf2yf12+2xf2yf222xf2xf22yf12xf22xf2yf222yf12yf22)=0   ...(1)

    (8xf28xf216a2)x2+(4(yf12+yf222yf1yf2)16a2)y2+(32a2xf4xf34xf3+4xf3+4xf3)x
    +(16a2yf1+16a2yf24yf134yf23+4yf1yf22+4yf2yf12)y+(16a4+yf14+yf242yf12yf22+2xf42xf416a2xf28a2(yf12+yf22))=0

    16a2x2(4(yf1yf2)216a2)y2+32a2xfx+(16a2(yf1+yf2)4yf1(yf12yf22)+4yf2(yf12yf22))y
    +(16a4+(yf12yf22)216a2xf28a2(yf12+yf22))=0

    16a2x2+(4(yf1yf2)216a2)y2+32a2xfx+(16a2(yf1+yf2)4yf1(yf1yf2)(yf1+yf2)+4yf2(yf1yf2)(yf1+yf2))y
    +(16a4+((yf1yf2)(yf1+yf2))216a2xf28a2(yf12+yf22))=0   ...(15)

    Now, we know that

    yf1yf2=2c   ...(16)

    (yf1yf2)2=4c2yf12+yf222yf1yf2=4c2yf12+yf22=4c2+2yf1yf2   ...(17)

    Also

    yf1+yf22=ycyf1+yf2=2yc   (where (xc,yc) are Coordinates of Center of Hyperbola) ...(18)

    (yf1+yf2)2=4yc2yf12+yf22+2yf1yf2=4yc2yf12+yf22=4yc22yf1yf2   ...(19)

    Adding equations (17) and (19) we get

    2(yf12+yf22)=4c2+2yf1yf2+4yc22yf1yf22(yf12+yf22)=4(c2+yc2)(yf12+yf22)=2(c2+yc2)   ...(20)

    Now, putting the values of yf1yf2, yf1+yf2 and yf12+yf22 from equations (16), (18) and (20) in equation (15) we get

    16a2x2+(4(2c)216a2)y2+32a2xfx+(16a2(2yc)4yf1(2c)(2yc)+4yf2(2c)(2yc))x+(16a4+((2c)(2yc))216a2xf28a2(2(c2+yc2)))=0

    16a2x2+(16c216a2)y2+32a2xfx+(32a2yc16yf1cyc+16yf2cyc)y+(16a4+16c2yc216a2xf216a2yc216a2c2)=0

    16a2x216(a2c2)y2+32a2xfx+(32a2yc16cyc(yf1yf2))y+(16a416a2c2+16c2yc216a2yc216a2xf2)=0

    16a2x216(a2c2)y2+32a2xfx+(32a2yc16cyc(2c))y+(16a2(a2c2)16yc2(a2c2)16a2xf2)=0

    16a2x216(a2c2)y2+32a2xfx+(32a2yc32c2yc)y+(16a2(a2c2)16yc2(a2c2)16a2xf2)=0

    16a2x216(a2c2)y2+32a2xfx+32yc(a2c2)y+(16a2(a2c2)16yc2(a2c2)16a2xf2)=0   ...(21)

    Now, for any Hyperbola a2c2=b2. Substituting it in equation (21) above we get

    16a2x2+16b2y2+32a2xfx32b2ycy16a2b2+16b2yc216a2xf2=0   ...(22)

    Dividing the equation (22) above by 16 on Both Sides we get

    a2x2+b2y2+2a2xfx2b2ycya2xf2+b2yc2a2b2=0   ...(23)

    Also for Y-Transverse Hyperbola xf=xc. Hence,

    a2x2+b2y2+2a2xcx2b2ycya2xc2+b2yc2a2b2=0   ...(24)

    The equation (24) above gives the equation of Y-Transverse Hyperbola.
Related Calculators
Conic from Foci and Major/Transverse Axis Length Calculator
Related Topics
Finding Equation of Hyperbola from a given Focus, a Vertex and Eccentricity,    Finding Equation of Hyperbola from given Adjacent Focus, Directrix and Eccentricity,    Finding Parametric Equations for Axis Aligned and Rotated Hyperbola Based on Secant and Tangent Ratios,    Finding Parametric Equations for Axis Aligned and Rotated Hyperbola Based on Hypebolic Sine and Cosine,    Introduction to Hyperbola,    General Quadratic Equations in 2 Variables and Conic Sections
© Invincible IDeAS. All Rights Reserved