If equation (1) represents an Implicit Equation of Hyperbola, values of \({\Large \frac{G}{A}}\) and \({\Large \frac{G}{C}}\) given in equation (4) will have Different Signs.
If the values of \({\Large \frac{G}{A}} > 0\) and \({\Large \frac{G}{C}} < 0\), then the equation (1) represents a \(X\)-Transverse Hyperbola and equation (4) gives it's Stardard Coordinate Equation.
If the values of \({\Large \frac{G}{A}} < 0\) and \({\Large \frac{G}{C}} > 0\), then the equation (1) represents a \(Y\)-Transverse Hyperbola and equation (4) gives it's Stardard Coordinate Equation.
Using equation (4) Various Parameters of Hyperbola given by Implicit Equation (1) can be given as
Coordinates of the Center: \((x_c,y_c)=(-\frac{D}{2A},-\frac{E}{2C})\)
Length of Semi-Transverse Axis: \(a=if(\frac{G}{A}>0, \sqrt{|\frac{G}{A}|},\sqrt{|\frac{G}{C}|})\)
Length of Transverse Axis: \(L=2a\)
Length of Semi-Conjugate Axis: \(b=if(\frac{G}{A}<0, \sqrt{|\frac{G}{A}|},\sqrt{|\frac{G}{B}|})\)
Length of Conjugate Axis: \(l=2b\)
Distance Between 2 Foci: \(F=\sqrt{L^2+l^2}=2c=2\sqrt{a^2+b^2}\)
Eccentricity \(e\) : \(\frac{F}{L}=\frac{c}{a}\)
Length for Latus Rectum : \(\frac{l^2}{L}=\frac{2b^2}{a}\)
If Transverse Axis is Parallel to \(X\)-Axis then Angular Orientation: 0° Coordinates of the 2 Foci: \((x_c + c,y_c),\hspace{.3cm}(x_c - c,y_c)\) Coordinates of the 2 Vertices: \((x_c + a,y_c),\hspace{.3cm}(x_c - a,y_c)\) Coordinates of the 2 Co-Vertices: \((x_c,y_c+b),\hspace{.3cm}(x_c,y_c-b)\) Equation of Transverse Axis: \(y=y_c\) Equation of Conjugate Axis: \(x=x_c\) Equation of Conjugate Hyperbola: \(\frac{{(y-y_c)}^2}{b^2} - \frac{{(x-x_c)}^2}{a^2} = 1\) Equation of 2 Directrices: \(x=x_c+\frac{L^2}{2F},\hspace{.3cm} x=x_c-\frac{L^2}{2F}\) OR \(x=x_c+\frac{a^2}{c},\hspace{.3cm} x=x_c-\frac{a^2}{c}\) Equation of 2 Latus Recta: \(x=x_c+c,\hspace{.5cm} x=x_c-c\) Coordinates of Points of Intersection of Latus Rectum-1 and Hyperbola: \((x_c+c,y_c+\frac{l^2}{2L})\),\((x_c+c,y_c-\frac{l^2}{2L})\) OR \((x_c+c,y_c+\frac{b^2}{a})\),\((x_c+c,y_c-\frac{b^2}{a})\) Coordinates of Points of Intersection of Latus Rectum-2 and Hyperbola: \((x_c-c,y_c+\frac{l^2}{2L})\),\((x_c-c,y_c-\frac{l^2}{2L})\) OR \((x_c-c,y_c+\frac{b^2}{a})\),\((x_c-c,y_c-\frac{b^2}{a})\)
If Transverse Axis is Parallel to \(Y\)-Axis then Angular Orientation: 90° Coordinates of the 2 Foci: \((x_c,y_c + c),\hspace{.3cm}(x_c,y_c - c)\) Coordinates of the 2 Vertices: \((x_c,y_c + a),\hspace{.3cm}(x_c,y_c - a)\) Coordinates of the 2 Co-Vertices: \((x_c+b,y_c),\hspace{.3cm}(x_c-b,y_c)\) Equation of Transverse Axis: \(x=x_c\) Equation of Conjugate Axis: \(y=y_c\) Equation of Conjugate Hyperbola: \(\frac{{(x-x_c)}^2}{b^2} - \frac{{(y-y_c)}^2}{a^2} = 1\) Equation of 2 Directrices: \(y=y_c+\frac{L^2}{2F},\hspace{.3cm} y=y_c-\frac{L^2}{2F}\) OR \(y=y_c+\frac{a^2}{c},\hspace{.3cm} y=y_c-\frac{a^2}{c}\) Equation of 2 Latus Recta: \(y=y_c+c,\hspace{.5cm} y=y_c-c\) Coordinates of Points of Intersection of Latus Rectum-1 and Hyperbola: \((x_c+\frac{l^2}{2L},y_c+c)\),\((x_c-\frac{l^2}{2L},y_c+c)\) OR \((x_c+\frac{b^2}{a},y_c+c)\),\((x_c-\frac{b^2}{a},y_c+c)\) Coordinates of Points of Intersection of Latus Rectum-2 and Hyperbola: \((x_c+\frac{l^2}{2L},y_c-c)\),\((x_c-\frac{l^2}{2L},y_c-c)\) OR \((x_c+\frac{b^2}{a},y_c-c)\),\((x_c-\frac{b^2}{a},y_c-c)\)