\(\frac{x-x_c}{a^2} - \frac{y-y_c}{b^2} = 1\) (For Hyperbolas having Transverse Axes Parallel to \(X\)-Axis)...(1)
\(\frac{y-y_c}{a^2} - \frac{x-x_c}{b^2} = 1\) (For Hyperbolas having Transverse Axes Parallel to \(Y\)-Axis)...(2)
The following gives the Formulae for finding out Various Parameters of Hyperbola given the Standard Coordinate Equation
Coordinates of the Center: \((x_c,y_c)\)
Length of Semi-Transverse Axis: \(a\)
Length of Transverse Axis: \(L=2a\)
Length of Semi-Conjugate Axis: \(b\)
Length of Conjugate Axis: \(l=2b\)
Distance Between 2 Foci: \(F=\sqrt{L^2+l^2}=2c=2\sqrt{a^2+b^2}\)
Eccentricity \(e\) : \(\frac{F}{L}=\frac{c}{a}\)
Length for Latus Rectum : \(\frac{l^2}{L}=\frac{2b^2}{a}\)
Equation the 2 Asymptotic Lines: \(a(y-y_c)=b(x-x_c),\hspace{.5cm}a(y-y_c)=-b(x-x_c)\)
If Transverse Axis is Parallel to \(X\)-Axis then Angular Orientation: 0° Coordinate of the 2 Foci: \((x_c + c,y_c),\hspace{.3cm}(x_c - c,y_c)\) Coordinate of the 2 Vertices: \((x_c + a,y_c),\hspace{.3cm}(x_c - a,y_c)\) Coordinate of the 2 Co-Vertices: \((x_c,y_c+b),\hspace{.3cm}(x_c,y_c-b)\) Equation of Transverse Axis: \(y=y_c\) Equation of Conjugate Axis: \(x=x_c\) Equation of Conjugate Hyperbola: \(\frac{{(y-y_c)}^2}{b^2} - \frac{{(x-x_c)}^2}{a^2} = 1\) Equation of 2 Directrices: \(x=x_c+\frac{L^2}{2F},\hspace{.3cm} x=x_c-\frac{L^2}{2F}\) OR \(x=x_c+\frac{a^2}{c},\hspace{.3cm} x=x_c-\frac{a^2}{c}\) Equation of 2 Latus Recta: \(x=x_c+c,\hspace{.5cm} x=x_c-c\) Coordinates of Points of Intersection of Latus Rectum-1 and Hyperbola: \((x_c+c,y_c+\frac{l^2}{2L})\),\((x_c+c,y_c-\frac{l^2}{2L})\) OR \((x_c+c,y_c+\frac{b^2}{a})\),\((x_c+c,y_c-\frac{b^2}{a})\) Coordinates of Points of Intersection of Latus Rectum-2 and Hyperbola: \((x_c-c,y_c+\frac{l^2}{2L})\),\((x_c-c,y_c-\frac{l^2}{2L})\) OR \((x_c-c,y_c+\frac{b^2}{a})\),\((x_c-c,y_c-\frac{b^2}{a})\)
If Transverse Axis is Parallel to \(Y\)-Axis then Angular Orientation: 90° Coordinate of the 2 Foci: \((x_c,y_c + c),\hspace{.3cm}(x_c,y_c - c)\) Coordinate of the 2 Vertices: \((x_c,y_c + a),\hspace{.3cm}(x_c,y_c - a)\) Coordinate of the 2 Co-Vertices: \((x_c+b,y_c),\hspace{.3cm}(x_c-b,y_c)\) Equation of Transverse Axis: \(x=x_c\) Equation of Conjugate Axis: \(y=y_c\) Equation of Conjugate Hyperbola: \(\frac{{(x-x_c)}^2}{b^2} - \frac{{(y-y_c)}^2}{a^2} = 1\) Equation of 2 Directrices: \(y=y_c+\frac{L^2}{2F},\hspace{.3cm} y=y_c-\frac{L^2}{2F}\) OR \(y=y_c+\frac{a^2}{c},\hspace{.3cm} y=y_c-\frac{a^2}{c}\) Equation of 2 Latus Recta: \(y=y_c+c,\hspace{.5cm} y=y_c-c\) Coordinates of Points of Intersection of Latus Rectum-1 and Hyperbola: \((x_c+\frac{l^2}{2L},y_c+c)\),\((x_c-\frac{l^2}{2L},y_c+c)\) OR \((x_c+\frac{b^2}{a},y_c+c)\),\((x_c-\frac{b^2}{a},y_c+c)\) Coordinates of Points of Intersection of Latus Rectum-2 and Hyperbola: \((x_c+\frac{l^2}{2L},y_c-c)\),\((x_c-\frac{l^2}{2L},y_c-c)\) OR \((x_c+\frac{b^2}{a},y_c-c)\),\((x_c-\frac{b^2}{a},y_c-c)\)