mail  mail@stemandmusic.in
    
call  +91-9818088802
Donate

Converting Parabola Equation from Explicit Coordinate to Parametric

  1. The Explicit Coordinate Equations for Axis Aligned Parabolas are given as

    \(y=Ax^2 + Bx + C\)   (For Parabolas having Directrix Parallel to \(X\)-Axis)...(1)

    \(x=Ay^2 + By + C\)   (For Parabolas having Directrix Parallel to \(Y\)-Axis)...(2)

  2. To Convert the Equation of Parabola from Explicit Coordinate to Parametric Equations the variable having the Quadratic Term is set to a Real Number Parameter \(t\).

    So the Parametric Equations For Parabolas having Directrix Parallel to \(X\)-Axis are given as

    \(x=t,\hspace{.5cm}y=At^2 + Bt + C\)   ...(3)

    Similarly the Parametric Equations For Parabolas having Directrix Parallel to \(Y\)-Axis are given as

    \(y=t,\hspace{.5cm}x=At^2 + Bt + C\)   ...(4)
Related Calculators
Parabola from Parametric Equation Calculator
Related Topics
Converting Parabola Equation from Standard Coordinate to Standard Parametric,    Converting Parabola Equation from Standard Parametric to Standard Coordinate,    Converting Parabola Equation from Axis Aligned Parametric to Explicit/Implicit Coordinate,    Converting Parabola Equation from General Parametric to Implicit Coordinate,    Converting Parabola Equation from Implicit Coordinate to General Parametric,    Parametric Equations of Parabola,    Introduction to Parabola,    General Quadratic Equations in 2 Variables and Conic Sections
© Invincible IDeAS. All Rights Reserved