The equation (2) given above is same as the Standard Coordinate Equation of Axis Aligned Parabolas having their Directrix Parallel to \(X\)-Axis given as follows
Using equations (2), (3), (4), (5) and (6) the Various Parameters of the Parabolas are given as
Coordinates of the Vertex: \((x_v,y_v)\)=\((-\frac{B}{2A},\frac{B^2-4AD}{4AC})\)
Signed Focal Length \(f\) : \(\frac{(Co-efficient\hspace{.2cm}of\hspace{.2cm}VLT)}{4}\)=\(\frac{-C}{4A}\)
Length for Latus Rectum : |Co-efficient of VLT|=\(|4f|\)=\(|\frac{-C}{A}|\)
Coordinate of the Focus: \((x_v,y_v+f)\)=\((-\frac{B}{2A},\frac{B^2-4AD}{4AC}+\frac{-C}{4A})\)=\((-\frac{B}{2A},\frac{B^2-4AD-C^2}{4AC})\)
Coordinates of Points of Intersection of Latus Rectum and Parabola: \((x_v-2f,y_v+f)\),\((x_v+2f,y_v+f)\)=\((-\frac{B-1}{2A},\frac{B^2-4AD-C^2}{4AC})\),\((-\frac{B+1}{2A},\frac{B^2-4AD-C^2}{4AC})\)
Equation of Directrix: \(y=y_v-f\hspace{.3cm}\Rightarrow y=\frac{B^2-4AD}{4AC}-\frac{-C}{4A}\hspace{.3cm}\Rightarrow y=\frac{B^2-4AD+C^2}{4AC}\)
Equation of Base: \(y=y_v \hspace{.3cm}\Rightarrow y=\frac{B^2-4AD}{4AC}\)
Equation of Latus Rectum: \(y=y_v+f\hspace{.3cm}\Rightarrow y=\frac{B^2-4AD}{4AC}+\frac{-C}{4A}\hspace{.3cm}\Rightarrow y=\frac{B^2-4AD-C^2}{4AC}\)
Equation of Axis of Symmetry: \(x=x_v\hspace{.3cm}\Rightarrow x=\frac{-B}{2A}\)
The equation (8) given above is same as the Standard Coordinate Equation of Axis Aligned Parabolas having their Directrix Parallel to \(Y\)-Axis given as follows
Using equations (8), (9), (10), (11) and (12) the Various Parameters of the Parabolas are given as
Coordinates of the Vertex: \((x_v,y_v)\)=\((\frac{B^2-4AD}{4AC},-\frac{B}{2A})\)
Signed Focal Length \(f\) : \(\frac{(Co-efficient\hspace{.2cm}of\hspace{.2cm}VLT)}{4}\)=\(\frac{-C}{4A}\)
Length for Latus Rectum : |Co-efficient of VLT|=\(|4f|\)=\(|\frac{-C}{A}|\)
Coordinate of the Focus: \((x_v+f,y_v)\)=\((\frac{B^2-4AD}{4AC}+\frac{-C}{4A},-\frac{B}{2A})\)=\((\frac{B^2-4AD-C^2}{4AC},-\frac{B}{2A})\)
Coordinates of Points of Intersection of Latus Rectum and Parabola: \((x_v+f,y_v-2f)\),\((x_v+f,y_v+2f)\)=\((\frac{B^2-4AD-C^2}{4AC},-\frac{B-1}{2A})\),\((\frac{B^2-4AD-C^2}{4AC},-\frac{B+1}{2A})\)
Equation of Directrix: \(x=x_v-f\hspace{.3cm}\Rightarrow x=\frac{B^2-4AD}{4AC}-\frac{-C}{4A}\hspace{.3cm}\Rightarrow x=\frac{B^2-4AD+C^2}{4AC}\)
Equation of Base: \(x=x_v \hspace{.3cm}\Rightarrow x=\frac{B^2-4AD}{4AC}\)
Equation of Latus Rectum: \(x=x_v+f\hspace{.3cm}\Rightarrow x=\frac{B^2-4AD}{4AC}+\frac{-C}{4A}\hspace{.3cm}\Rightarrow x=\frac{B^2-4AD-C^2}{4AC}\)
Equation of Axis of Symmetry: \(y=y_v\hspace{.3cm}\Rightarrow y=\frac{-B}{2A}\)