mail  mail@stemandmusic.in
    
call  +91-9818088802
Donate

Finding Parameters of Axis Aligned Parabola from Implicit Coordinate Equation

  1. As given in Derivation and Properties of Implicit Coordinate Equation for Axis Aligned and Arbitrarily Rotated Parabolas, the Implicit Coordinate Equation for Parabolas having their Directrix Parallel to \(X\)-Axis is given as

    \(Ax^2+Bx+Cy+D=0\)   ...(1)

    In equation (1) Variable \(y\) has only the Linear Term. This Variable will be refered to as Variable with Only Linear Term (VLT) below.

    The equation (1) can be converted to Standard Coordinate Equation of Axis Aligned Parabola by Completing the Squares as given in the following

    \(Ax^2+Bx+Cy+D=0\)

    \(\Rightarrow -Cy=Ax^2+Bx+D\)

    \(\Rightarrow \frac{-C}{A}y= x^2+\frac{B}{A}x+\frac{D}{A}\)

    \(\Rightarrow \frac{-C}{A}y= x^2+\frac{B}{A}x + {(\frac{B}{2A})}^2 - {(\frac{B}{2A})}^2 +\frac{D}{A}\)

    \(\Rightarrow \frac{-C}{A}y= {(x+\frac{B}{2A})}^2 + \frac{D}{A}- {\frac{B^2}{4A^2}}\)

    \(\Rightarrow \frac{-C}{A}y= {(x+\frac{B}{2A})}^2 + \frac{4AD-B^2}{4A^2}\)

    \(\Rightarrow \frac{-C}{A}y-\frac{4AD-B^2}{4A^2}= {(x+\frac{B}{2A})}^2 \)

    \(\Rightarrow {(x+\frac{B}{2A})}^2 = \frac{-C}{A}(y-\frac{B^2-4AD}{4AC})\)   ...(2)

    The equation (2) given above is same as the Standard Coordinate Equation of Axis Aligned Parabolas having their Directrix Parallel to \(X\)-Axis given as follows

    \({(x-x_v)}^2 = 4f(y - y_v)\)   ...(3)

    where,

    \(x_v=-\frac{B}{2A}\)   ...(4)

    \(y_v=\frac{B^2-4AD}{4AC}\)   ...(5)

    \(4f=\frac{-C}{A}\hspace{.5cm}\Rightarrow f=\frac{-C}{4A}\)   ...(6)

    Using equations (2), (3), (4), (5) and (6) the Various Parameters of the Parabolas are given as
    1. Coordinates of the Vertex: \((x_v,y_v)\)=\((-\frac{B}{2A},\frac{B^2-4AD}{4AC})\)
    2. Signed Focal Length \(f\) : \(\frac{(Co-efficient\hspace{.2cm}of\hspace{.2cm}VLT)}{4}\)=\(\frac{-C}{4A}\)
    3. Length for Latus Rectum : |Co-efficient of VLT|=\(|4f|\)=\(|\frac{-C}{A}|\)
    4. Coordinate of the Focus: \((x_v,y_v+f)\)=\((-\frac{B}{2A},\frac{B^2-4AD}{4AC}+\frac{-C}{4A})\)=\((-\frac{B}{2A},\frac{B^2-4AD-C^2}{4AC})\)
    5. Coordinates of Points of Intersection of Latus Rectum and Parabola: \((x_v-2f,y_v+f)\),\((x_v+2f,y_v+f)\)=\((-\frac{B-1}{2A},\frac{B^2-4AD-C^2}{4AC})\),\((-\frac{B+1}{2A},\frac{B^2-4AD-C^2}{4AC})\)
    6. Equation of Directrix: \(y=y_v-f\hspace{.3cm}\Rightarrow y=\frac{B^2-4AD}{4AC}-\frac{-C}{4A}\hspace{.3cm}\Rightarrow y=\frac{B^2-4AD+C^2}{4AC}\)
    7. Equation of Base: \(y=y_v \hspace{.3cm}\Rightarrow y=\frac{B^2-4AD}{4AC}\)
    8. Equation of Latus Rectum: \(y=y_v+f\hspace{.3cm}\Rightarrow y=\frac{B^2-4AD}{4AC}+\frac{-C}{4A}\hspace{.3cm}\Rightarrow y=\frac{B^2-4AD-C^2}{4AC}\)
    9. Equation of Axis of Symmetry: \(x=x_v\hspace{.3cm}\Rightarrow x=\frac{-B}{2A}\)
  2. Similarly, as given in Derivation and Properties of Implicit Coordinate Equation for Axis Aligned and Arbitrarily Rotated Parabolas, the Implicit Coordinate Equation for Parabolas having their Directrix Parallel to \(Y\)-Axis is given as

    \(Ay^2+By+Cx+D=0\)   ...(7)

    In equation (7) Variable \(x\) has only the Linear Term. This Variable will be refered to as Variable with Only Linear Term (VLT) below.

    The equation (7) can be converted to Standard Coordinate Equation of Axis Aligned Parabola by Completing the Squares as given in the following

    \(Ay^2+By+Cx+D=0\)

    \(\Rightarrow -Cx=Ay^2+By+D\)

    \(\Rightarrow \frac{-C}{A}x= y^2+\frac{B}{A}y+\frac{D}{A}\)

    \(\Rightarrow \frac{-C}{A}x= y^2+\frac{B}{A}y + {(\frac{B}{2A})}^2 - {(\frac{B}{2A})}^2 +\frac{D}{A}\)

    \(\Rightarrow \frac{-C}{A}x= {(y+\frac{B}{2A})}^2 + \frac{D}{A}- {\frac{B^2}{4A^2}}\)

    \(\Rightarrow \frac{-C}{A}x= {(y+\frac{B}{2A})}^2 + \frac{4AD-B^2}{4A^2}\)

    \(\Rightarrow \frac{-C}{A}x-\frac{4AD-B^2}{4A^2}= {(y+\frac{B}{2A})}^2 \)

    \(\Rightarrow {(y+\frac{B}{2A})}^2=\frac{-C}{A}(x-\frac{B^2-4AD}{4AC})\)   ...(8)

    The equation (8) given above is same as the Standard Coordinate Equation of Axis Aligned Parabolas having their Directrix Parallel to \(Y\)-Axis given as follows

    \({(y-y_v)}^2 = 4f(x - x_v)\)   ...(9)

    where,

    \(x_v=\frac{B^2-4AD}{4AC}\)   ...(10)

    \(y_v=-\frac{B}{2A}\)   ...(11)

    \(4f=\frac{-C}{A}\hspace{.5cm}\Rightarrow f=\frac{-C}{4A}\)   ...(12)

    Using equations (8), (9), (10), (11) and (12) the Various Parameters of the Parabolas are given as
    1. Coordinates of the Vertex: \((x_v,y_v)\)=\((\frac{B^2-4AD}{4AC},-\frac{B}{2A})\)
    2. Signed Focal Length \(f\) : \(\frac{(Co-efficient\hspace{.2cm}of\hspace{.2cm}VLT)}{4}\)=\(\frac{-C}{4A}\)
    3. Length for Latus Rectum : |Co-efficient of VLT|=\(|4f|\)=\(|\frac{-C}{A}|\)
    4. Coordinate of the Focus: \((x_v+f,y_v)\)=\((\frac{B^2-4AD}{4AC}+\frac{-C}{4A},-\frac{B}{2A})\)=\((\frac{B^2-4AD-C^2}{4AC},-\frac{B}{2A})\)
    5. Coordinates of Points of Intersection of Latus Rectum and Parabola: \((x_v+f,y_v-2f)\),\((x_v+f,y_v+2f)\)=\((\frac{B^2-4AD-C^2}{4AC},-\frac{B-1}{2A})\),\((\frac{B^2-4AD-C^2}{4AC},-\frac{B+1}{2A})\)
    6. Equation of Directrix: \(x=x_v-f\hspace{.3cm}\Rightarrow x=\frac{B^2-4AD}{4AC}-\frac{-C}{4A}\hspace{.3cm}\Rightarrow x=\frac{B^2-4AD+C^2}{4AC}\)
    7. Equation of Base: \(x=x_v \hspace{.3cm}\Rightarrow x=\frac{B^2-4AD}{4AC}\)
    8. Equation of Latus Rectum: \(x=x_v+f\hspace{.3cm}\Rightarrow x=\frac{B^2-4AD}{4AC}+\frac{-C}{4A}\hspace{.3cm}\Rightarrow x=\frac{B^2-4AD-C^2}{4AC}\)
    9. Equation of Axis of Symmetry: \(y=y_v\hspace{.3cm}\Rightarrow y=\frac{-B}{2A}\)
Related Topics
Derivation and Properties of Implicit Coordinate Equation for Axis Aligned and Arbitrarily Rotated Parabolas,    Introduction to Parabola,    General Quadratic Equations in 2 Variables and Conic Sections
© Invincible IDeAS. All Rights Reserved