Projection of Point on a Line/Plane/Hyper-Plane

  1. The Position Vector of Projection \(\vec{C_P}\) of a Point \(C\) having Position Vector \(\vec{C}\) on any Line in 2D, 3D or Higher Dimensions having Direction Ratio \(\vec{A}\) containing a Point \(B\) having Position Vector \(\vec{B}\) is given as

    \( \vec{C_P}=\vec{C} - {\vec{CB}}_\perp =\vec{C} - (\vec{CB} - {\vec{CB}}_{||}) =\vec{C} - (\vec{CB} - \frac{(\vec{A} \cdot \vec{CB})\vec{A}}{{|\vec{A}|}^2}) =\vec{B} + {\vec{CB}}_{||} = \vec{B} + \frac{(\vec{A} \cdot \vec{CB})\vec{A}}{{|\vec{A}|}^2}\)   (In 2D, 3D and Higher Dimensions)   ...(1)

    \( \vec{C_P}=\vec{C} - \frac{\vec{A} \times (\vec{CB}\times \vec{A})}{{|\vec{A}|}^2} =\vec{C} - \frac{(\vec{A} \times \vec{CB})\times \vec{A}}{{|\vec{A}|}^2} \)   (In 2D and 3D only)   ...(2)

    where \(\vec{CB}=\vec{C}-\vec{B}\), \(\vec{C_P}\)=Position Vector of Projected Point \(C_P\)

    The Projection of Origin on the Line (i.e. when Position Vector \(\vec{C}=\vec{0}\) or NULL Vector ) is given by \(\vec{C_P}=\vec{B_\perp}\).
  2. The Position Vector of Projection \(\vec{C_P}\) of a Point \(C\) having Position Vector \(\vec{C}\) on any Line in 2D (or on any Plane in 3D or on any Hyper-Plane in Higher Dimensions) having Direction Ratio of Normal \(\vec{A}\) containing a Point \(B\) having Position Vector \(\vec{B}\) is given as

    \( \vec{C_P}= \vec{C} - \vec{CB}_{||}=\vec{C} - (\frac{(\vec{A} \cdot \vec{CB}) \vec{A} }{{|\vec{A}|}^2})\)   ...(3)

    where \(\vec{CB}=\vec{C}-\vec{B}\), \(\vec{C_P}\)=Position Vector of Projected Point \(C_P\)

    The Projection of Origin on the Line / Plane / Hyperplane (i.e. when Position Vector \(\vec{C}=\vec{0}\) or NULL Vector ) is given by \(\vec{C_P}=\vec{B_{||}}\).
  3. Projection of a Point on any Line in 2D (or on any Plane in 3D or on any Hyper-Plane in Higher Dimensions) given Coordinate Equations of the Line / Plane / Hyper-Plane is given as follows
    1. In 2 Dimensions the Projection of a Point having Coordinates (\(x_c,y_c\)) on a Line having Coordinate Equation \(ax + by + c=0\) is given as:
      Equation FormVector Form
      \(x_p = x_c - D \hat{a} \)
      \(y_p = y_c - D \hat{b} \)
      \( \begin{bmatrix} x_p \\ y_p \end{bmatrix} = \begin{bmatrix} x_c \\ y_c \end{bmatrix} - D \begin{bmatrix} \hat{a} \\ \hat{b}\end{bmatrix} \)
      (\(\hat{a},\hat{b}\))=Unit Vectors corresponding to coefficients a and b of Line
      \(D\)= Signed Distance from Point to Line=\(\frac{ax_c+by_c+c}{\sqrt{a^2+b^2}}\)
      \((x_p,y_p)\)=Coordinates of the Projected Point
    2. In 3 Dimensions the Projection of a Point having Coordinates (\(x_c,y_c,z_c\)) on a Plane having Coordinate Equation \(ax + by + cz +d =0\) is given as:
      Equation FormVector Form
      \(x_p = x_c - D \hat{a} \)
      \(y_p = y_c - D \hat{b} \)
      \(z_p = z_c - D \hat{c} \)
      \( \begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix} = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} - D \begin{bmatrix} \hat{a} \\ \hat{b} \\ \hat{c} \end{bmatrix} \)
      (\(\hat{a},\hat{b},\hat{c}\))=Unit Vectors corresponding to coefficients a, b and c of Plane
      \(D\)= Signed Distance from Point to Plane=\(\frac{ax_c+by_c + cz_c + d}{\sqrt{a^2+b^2+c^2}}\)
      \((x_p,y_p,z_p)\)=Coordinates of the Projected Point
    3. In any Arbirary N Dimensions (where \(N \geq 2\)) the Projection of a Point having Coordinates (\(x_{1c},x_{2c},x_{3c},\cdots,x_{nc}\)) on a Line / Plane / Hyper Plane having Coordinate Equation \(a_1x_1 + a_2x_2 + a_3x_3 + \cdots + a_nx_n + a_{n+1}=0\) is given as:
      Equation FormVector Form
      \(x_{1p} = x_{1c} - D \hat{a_1} \)
      \(x_{2p} = x_{2c} - D \hat{a_2} \)
      \(x_{3p} = x_{3c} - D \hat{a_3} \)
      \(\vdots\)
      \(x_{np} = x_{nc} - D \hat{a_n} \)
      \( \begin{bmatrix} x_{1p} \\ x_{2p} \\ x_{3p} \\ \vdots \\ x_{np} \end{bmatrix} = \begin{bmatrix} x_{1c} \\ x_{2c} \\ x_{3c} \\ \vdots \\ x_{nc} \end{bmatrix} - D \begin{bmatrix} \hat{a_1} \\ \hat{a_2} \\ \hat{a_3} \\ \vdots \\ \hat{a_n} \end{bmatrix} \)
      (\(\hat{a_1},\hat{a_2},\hat{a_3},\cdots,\hat{a_n}\))=Unit Vectors corresponding to coefficients \(a_1\), \(a_2\), \(a_3\), \(\cdots\), \(a_n\) of Line / Plane / Hyper-Plane
      \(D\)= Signed Distance from Point to Line / Plane / Hyperplane=\(\frac{a_1x_{1c}\hspace{1mm}+\hspace{1mm}a_2x_{2c}\hspace{1mm}+\hspace{1mm}a_3x_{3c}\hspace{1mm}+\hspace{1mm}\cdots\hspace{1mm}+\hspace{1mm}a_nx_{nc}\hspace{1mm}+\hspace{1mm}a_{n+1}}{\sqrt{{a_1}^2\hspace{1mm}+\hspace{1mm}{a_2}^2\hspace{1mm}+\hspace{1mm}{a_3}^2\hspace{1mm}+\hspace{1mm}\cdots\hspace{1mm}+\hspace{1mm}{a_n}^2}}\)
      (\(x_{1p},x_{2p},x_{3p},\cdots,x_{np}\))=Coordinates of the Projected Point
  4. Projection of a Point on any Line in 2D (or on any Plane in 3D or on any Hyper-Plane in Higher Dimensions) given Unit Normal form of Coordinate Equations of the Line / Plane / Hyper-Plane is given as follows
    1. In 2 Dimensions the Projection of a Point having Coordinates (\(x_c,y_c\)) on a Line having Unit Normal form of Coordinate Equation \(ax + by + c=0\) where \(a\) and \(b\) are Components of Unit Vector Normal to the Line and \(c\) is the Signed Distance of the Line from Origin is given as

      \(\begin{bmatrix} 1 - a^2 & -ab & -ac\\-ab & 1-b^2 & -bc\\0 & 0 & 1\end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ 1\end{bmatrix} = \begin{bmatrix} x_p \\ y_p \\ 1\end{bmatrix}\)

      where (\(x_p,y_p\)) are Coordinates of the Projected Point
    2. In 3 Dimensions the Projection of a Point having Coordinates (\(x_c,y_c,z_c\)) on a Plane having Unit Normal form of Coordinate Equation \(ax + by + cz + d=0\) where \(a\), \(b\) and \(c\) are Components of Unit Vector Normal to the Plane and \(d\) is the Signed Distance of the Plane from Origin is given as

      \(\begin{bmatrix} 1 - a^2 & -ab & -ac & -ad\\-ab & 1-b^2 & -bc & -bd\\-ac & -bc & 1-c^2 & -cd \\0 & 0 & 0 & 1\end{bmatrix} \begin{bmatrix} x_c \\ y_c \\z_c \\ 1\end{bmatrix} = \begin{bmatrix} x_p \\ y_p \\ z_p \\ 1\end{bmatrix}\)

      where (\(x_p,y_p,z_p\)) are Coordinates of the Projected Point
    3. In any Arbirary N Dimensions (where \(N \geq 2\)) the Projection of a Point having Coordinates (\(x_{1c},x_{2c},x_{3c},\cdots,x_{nc}\)) on a Line / Plane / Hyper-Plane having Unit Normal form of Coordinate Equation \(a_1x_1 + a_2x_2 + a_3x_3 + \cdots + a_nx_n + a_{n+1}=0\) where \(a_1\), \(a_2\), \(\cdots\), \(a_n\) are Components of Unit Vector Normal to the Line / Plane / Hyper-Plane and \(a_{n+1}\) is the Signed Distance of the Line / Plane / Hyper-Plane from Origin is given as

      \(\begin{bmatrix} 1 - {a_1}^2 & -a_1a_2 & -a_1a_3 & \cdots & -a_1a_n & -a_1a_{n+1}\\-a_2a_1 & 1-{a_2}^2 & -a_2a_3 & \cdots & -a_2a_n & -a_2a_{n+1}\\-a_3a_1 & -a_3a_2 & 1-{a_3}^2 & \cdots & -a_3a_n & -a_3a_{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -a_na_1 & -a_na_2 & -a_na_3 & \cdots & 1-{a_n}^2 & -a_na_{n+1} \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1c} \\ x_{2c} \\ x_{3c} \\ \vdots \\ x_{nc} \\ 1\end{bmatrix} = \begin{bmatrix} x_{1p} \\ x_{2p} \\ x_{3p} \\ \vdots \\ x_{np} \\ 1\end{bmatrix}\)

      where (\(x_{1p},x_{2p},x_{3p},\cdots,x_{np}\)) are Coordinates of the Projected Point
Related Topics and Calculators
Reflection,    Distance of Point from a Line/Plane/Hyper-Plane,    Distance, Projection, Reflection of a Point from/on/across a Line/Plane/Hyper-Plane Calculator,    Distance, Projection, Reflection of a Point from/on/across a Line Calculator,    Projection of Vector on a Plane,   Orthogonal Vector Projection/Rejection,    Non-Orthogonal/Oblique Vector Projection/Rejection,   Vector Space of a Matrix, Projection/Rejection Matrices and Projected/Rejected Vectors