mail  mail@stemandmusic.in
    
call  +91-9818088802
Donate

Centers of Central Quadric Surfaces

  1. Ellipsoids, Spheres, Cones and Hyperboloids are called Central Quadric Surfaces as they have a Geometrical Center Point across which the Surfaces are Symmetric, i.e Any Plane passing through this Point divides the Surfaces in 2 Equal Halves.
  2. The Implicit Equation for any Central Quadric Surface having its Center at the Origin is given as

    \(Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + K=0\)   ...(1)

    On Translating the Center of the Quadric Surface given in equation (1) to a Point (\(x_c,y_c,z_c\)) (which is same as Translating the Equation of the Quadric Surface by (\(x_c,y_c,z_c\))), the Implicit Equation of the Quadric Surface gets updated as

    \(A{(x-x_c)}^2 + B{(y-y_c)}^2 + C{(z-z_c)}^2 + D(x-x_c)(y-y_c) + E(x-x_c)(z-z_c) + F(y-y_c)(z-z_c) + K = 0\)

    \(\Rightarrow A(x^2 + {x_c}^2 - 2x_cx) + B(y^2 + {y_c}^2 - 2y_cy) + C(z^2 + {z_c}^2 - 2z_cz) + D(xy - y_cx - x_cy + x_cy_c) + E(xz - z_cx - x_cz + x_cz_c) + F(yz - z_cy - y_cz + y_cz_c)+ K = 0\)

    \(\Rightarrow Ax^2 + A{x_c}^2 - 2Ax_cx + By^2 + B{y_c}^2 - 2By_cy + Cz^2 + C{z_c}^2 - 2Cz_cz + Dxy - Dy_cx - Dx_cy + Dx_cy_c + Exz - Ez_cx - Ex_cz + Ex_cz_c + Fyz - Fz_cy - Fy_cz + Fy_cz_c K = 0\)

    \(\Rightarrow Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + (- 2Ax_c - Dy_c - Ez_c)x + (- 2By_c - Dx_c - Fz_c)y + (- 2Cz_c - Ex_c - Fy_c)z + A{x_c}^2 + B{y_c}^2 + C{z_c}^2 + Dx_cy_c + Ex_cz_c + Fy_cz_c + K = 0\)   ...(2)

    \(\Rightarrow Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + K_1 = 0\)   ...(3)

    where

    \(G=- 2Ax_c - Dy_c - Ez_c\)   ...(4)

    \(H=- 2By_c - Dx_c - Fz_c\)   ...(5)

    \(I=- 2Cz_c - Ex_c - Fy_c\)   ...(6)

    \(K_1=A{x_c}^2 + B{y_c}^2 + C{z_c}^2 + Dx_cy_c + Ex_cz_c + Fy_cz_c + K\)   ...(7)

    The equations (2) and (3) above give the Equation of the Central Quadric Surface whose Center is Translated by an Offset \((x_c,y_c,z_c)\) from the Origin.

    Now, the equations (4) , (5) and (6) above can be written in form of a Matrix Equation as follows

    \(\begin{bmatrix}-2A & -D & -E\\-D & -2B & - F\\-E & -F & - 2C\end{bmatrix}\begin{bmatrix}x_c\\y_c\\z_c\end{bmatrix}=\begin{bmatrix}G\\H\\I\end{bmatrix}\)   ...(8)

    The Coordinates of Center of the Quadric Surface \((x_c,y_c,z_c)\) can be determined by solving the System of Linear Equations given by the Matrix Equation (8).
Related Topics
Conic Section Analysis Calculator,    Introduction to Parabola,    Introduction to Ellipse,    Introduction to Hyperbola,    General Quadratic Equations in 3 Variables,    General Polynomial Equations
© Invincible IDeAS. All Rights Reserved