Scaling Type | Equation Form | Matrix Form |
Scaling in 2D |
\(x' = k_x \times x\) \(y' = k_y \times y \) |
\(\begin{bmatrix} k_x & 0 \\0 & k_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}\) |
Scaling in 3D |
\(x' = k_x \times x\) \(y' = k_y \times y \) \(z' = k_z \times z \) |
\(\begin{bmatrix} k_x & 0 & 0 \\0 & k_y & 0\\0 & 0 & k_z\end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}\) |
Derivation Type | Derivation |
Matrix Multiplication | \(\begin{bmatrix} 1 & 0 & o_x \\ 0 & 1 & o_y \\0 & 0 & 1\end{bmatrix} \begin{bmatrix} k_x & 0 & 0 \\ 0 & k_y & 0 \\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -o_x \\ 0 & 1 & -o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} k_x & 0 & -k_x \times o_x + o_x\\0 & k_y & -k_y \times o_y + o_y\\0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \) |
Equation |
\(x' = (k_x \times x) - (k_x \times o_x) + o_x\) \(y' = (k_y \times y) - (k_y \times o_y) + o_y\) |
Derivation Type | Derivation |
Matrix Multiplication | \(\begin{bmatrix} 1 & 0 & 0 & o_x \\ 0 & 1 & 0 & o_y \\0 & 0 & 1 & o_z \\0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} k_x & 0 & 0 & 0 \\ 0 & k_y & 0 & 0 \\0 & 0 & k_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -o_x \\ 0 & 1 & 0 & -o_y \\ 0 & 0 & 1 & -o_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} k_x & 0 & 0 & -k_x \times o_x + o_x\\0 & k_y & 0 & -k_y \times o_y + o_y\\0 & 0 & k_z & -k_z \times o_z + o_z\\0 & 0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \) |
Equation |
\(x' = (k_x \times x) - (k_x \times o_x) + o_x\) \(y' = (k_y \times y) - (k_y \times o_y) + o_y\) \(z' = (k_z \times z) - (k_z \times o_z) + o_z\) |