Translation Type | Equation Form | Matrix Multiplication Form |
Moving the object by \(t_x,t_y\) (or if the equation changes because of shifting of origin to \((t_x,t_y)\)) |
\(x' = x + t_x\) \(y' = y + t_y\) |
\(\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}\) |
Shifting of the origin of the coordinate system to \(t_x,t_y\) (or if the equation changes because of moving object by \((t_x,t_y)\)) |
\(x' = x - t_x\) \(y' = y - t_y\) |
\(\begin{bmatrix} 1 & 0 & -t_x \\ 0 & 1 & -t_y\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}\) |
Translation Type | Equation Form | Matrix Multiplication Form |
Moving the object by \(t_x,t_y,t_z\) (or if the equation changes because of shifting of origin to \((t_x,t_y,t_z)\)) |
\(x' = x + t_x\) \(y' = y + t_y\) \(z' = z + t_z\) |
\(\begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix}\) |
Shifting of the origin of the coordinate system to \(t_x,t_y,t_z\) (or if the equation changes because of moving object by \((t_x,t_y,t_z)\)) |
\(x' = x - t_x\) \(y' = y - t_y\) \(z' = z - t_z\) |
\(\begin{bmatrix} 1 & 0 & 0 & -t_x \\ 0 & 1 & 0 & -t_y \\ 0 & 0 & 1 & -t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix}\) |