\(P\) is Real if \(B>0\) (but \(B\neq 1\)) And \(N>0\). \(P\) is Complex if \(B<0\) Or \(N<0\).
\(P\) is Real Positive if Either Both\(B>1\) And \(N>1\) OR if Both \(0 < B < 1\) And \(0 < N < 1\) . \(P\) is Real Negative if only One of \(0 < B < 1\) Or \(0 < N < 1\).
Power-Multiplication Rule: \(\log_B A^N = N \log_B A\)
Using Log and AntiLog to Calculate Arbitrary Roots and Powers: \(T^S=B^{(S \times \log_B T)}\)
For all Real Values of \(x>0\):
\(\log_e x = \ln x =2[\frac{x-1}{x+1}+\frac{1}{3}{(\frac{x-1}{x+1})}^3+\frac{1}{5}{(\frac{x-1}{x+1})}^5+\frac{1}{7}{(\frac{x-1}{x+1})}^7 + ...]=2 \sum_{n=1}^{\infty} \frac{1}{2n-1}{(\frac{x-1}{x+1})}^{2n-1}\)