mail
mail@stemandmusic.in
call
+91-9818088802
Donate
Characteristic Polynomial / Polynomial Equation of a Square Matrix
Given a \(N \times N\) Square Matrix \(A\) having \(a_{ij}\) as elements of \(i^{th}\) Row and \(j^{th}\) Column as follows
\(A=\begin{bmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & ... & a_{nn}\end{bmatrix}\)
The
Characteristic Polynomial of Matrix \(A\) is given by the following Determinant
\(\begin{vmatrix} a_{11}-x & a_{12} & ... & a_{1n}\\ a_{21} & a_{22}-x & ... & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & ... & a_{nn}-x\end{vmatrix}\)
The
Characteristic Polynomial Equation of Matrix \(A\) is given by the following Determinant Equation
\(\begin{vmatrix} a_{11}-x & a_{12} & ... & a_{1n}\\ a_{21} & a_{22}-x & ... & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & ... & a_{nn}-x\end{vmatrix}= \begin{vmatrix} x-a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & x-a_{22} & ... & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & ... & x-a_{nn}\end{vmatrix}=0\) ...(1)
On expanding the Determinant given in equation (1) we get the following
Polynomial Equation
\(x^N\hspace{.2cm}+\hspace{.2cm}(-1)^{1} T_1 x^{N-1}\hspace{.2cm}+\hspace{.2cm}(-1)^{2} T_2 x^{N-2}\hspace{.2cm}+\hspace{.2cm}(-1)^{3} T_3 x^{N-3}\hspace{.2cm}+\hspace{.2cm}\cdots\hspace{.2cm} +\hspace{.2cm}(-1)^{N-1} T_{N-1}x\hspace{.2cm}+\hspace{.2cm}(-1)^{N}D =0\) ...(2)
where \(T_1, T_2, T_3, ..., T_{N-1}\) are the
Traces of K
th
Principal Minors of Matrix \(A\)
and \(D\) is the
Determinant Value of Matrix \(A\)
.
The
Roots of the Characteristic Polynomial Equation of a Matrix
as given by equation (2) give the
Eigen Values of the Matrix
.
All Matrices Satisfy their own Characteristic Polynomial Equation
. For example, for Matrix \(A\)
\(A^N\hspace{.2cm}+\hspace{.2cm}(-1)^{1} T_1 A^{N-1}\hspace{.2cm}+\hspace{.2cm}(-1)^{2} T_2 A^{N-2}\hspace{.2cm}+\hspace{.2cm}(-1)^{3} T_3 A^{N-3}\hspace{.2cm}+\hspace{.2cm}\cdots\hspace{.2cm} +\hspace{.2cm}(-1)^{N-1} T_{N-1}A\hspace{.2cm}+\hspace{.2cm}(-1)^{N}DI =0\) ...(3)
where \(I\) is \(N \times N\)
Identity Matrix
.
Related Calculators
Principal Minors, Trace of Principal Minors, Determinant and Polynomial of Matrix Calculator
Related Topics and Calculators
Principal Minors and Traces of Principal Minors of a Square Matrix
,
Determinant, Minor, Cofactor and Adjoint of a Square Matrix
,
Introduction to Matrix Algebra
Home
|
TOC
|
Calculators
©
Invincible IDeAS
. All Rights Reserved