mail  mail@stemandmusic.in
    
call  +91-9818088802
Donate

Characteristic Polynomial / Polynomial Equation of a Square Matrix

  1. Given a \(N \times N\) Square Matrix \(A\) having \(a_{ij}\) as elements of \(i^{th}\) Row and \(j^{th}\) Column as follows

    \(A=\begin{bmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & ... & a_{nn}\end{bmatrix}\)

    The Characteristic Polynomial of Matrix \(A\) is given by the following Determinant

    \(\begin{vmatrix} a_{11}-x & a_{12} & ... & a_{1n}\\ a_{21} & a_{22}-x & ... & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & ... & a_{nn}-x\end{vmatrix}\)

    The Characteristic Polynomial Equation of Matrix \(A\) is given by the following Determinant Equation

    \(\begin{vmatrix} a_{11}-x & a_{12} & ... & a_{1n}\\ a_{21} & a_{22}-x & ... & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & ... & a_{nn}-x\end{vmatrix}= \begin{vmatrix} x-a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & x-a_{22} & ... & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & ... & x-a_{nn}\end{vmatrix}=0\)   ...(1)
  2. On expanding the Determinant given in equation (1) we get the following Polynomial Equation

    \(x^N\hspace{.2cm}+\hspace{.2cm}(-1)^{1} T_1 x^{N-1}\hspace{.2cm}+\hspace{.2cm}(-1)^{2} T_2 x^{N-2}\hspace{.2cm}+\hspace{.2cm}(-1)^{3} T_3 x^{N-3}\hspace{.2cm}+\hspace{.2cm}\cdots\hspace{.2cm} +\hspace{.2cm}(-1)^{N-1} T_{N-1}x\hspace{.2cm}+\hspace{.2cm}(-1)^{N}D =0\)   ...(2)

    where \(T_1, T_2, T_3, ..., T_{N-1}\) are the Traces of Kth Principal Minors of Matrix \(A\) and \(D\) is the Determinant Value of Matrix \(A\).
  3. The Roots of the Characteristic Polynomial Equation of a Matrix as given by equation (2) give the Eigen Values of the Matrix.
  4. All Matrices Satisfy their own Characteristic Polynomial Equation. For example, for Matrix \(A\)

    \(A^N\hspace{.2cm}+\hspace{.2cm}(-1)^{1} T_1 A^{N-1}\hspace{.2cm}+\hspace{.2cm}(-1)^{2} T_2 A^{N-2}\hspace{.2cm}+\hspace{.2cm}(-1)^{3} T_3 A^{N-3}\hspace{.2cm}+\hspace{.2cm}\cdots\hspace{.2cm} +\hspace{.2cm}(-1)^{N-1} T_{N-1}A\hspace{.2cm}+\hspace{.2cm}(-1)^{N}DI =0\)   ...(3)

    where \(I\) is \(N \times N\) Identity Matrix.
Related Calculators
Principal Minors, Trace of Principal Minors, Determinant and Polynomial of Matrix Calculator
Related Topics and Calculators
Principal Minors and Traces of Principal Minors of a Square Matrix,    Determinant, Minor, Cofactor and Adjoint of a Square Matrix,    Introduction to Matrix Algebra
© Invincible IDeAS. All Rights Reserved