Processing math: 100%
mail  mail@stemandmusic.in
    
call  +91-9818088802

Determinant Product in Arbitrary Non Standard Basis

  1. Just like Cross Product, the Determinant Product of Vectors can be calculated for Vectors given in Any Arbitrary Non Standard Basis.
  2. The following demonstrates the calculation of Determinant Product for 3 4-Dimensional Vectors A, B and C represented in any Arbitrary Non Standard Basis e1, e2, e3 and e4

    A=A1e1+A2e2+A3e3+A4e4B=B1e1+B2e2+B3e3+B4e4C=C1e1+C2e2+C3e3+C4e4

    [ABC]D=|e1e2e3e4A1A2A3A4B1B2B3B4C1C2C3C4|

    [ABC]D=|A2A3A4B2B3B4C2C3C4|[e2e3e4]D|A1A3A4B1B3B4C1C3C4|[e1e3e4]D+|A1A2A4B1B2B4C1C2C4|[e3e4e1]D|A1A2A3B1B2B3C1C2C3|[e1e2e3]D

    Setting e5=[e2e3e4]D,   e6=[e1e3e4]D,   e7=[e1e2e4]D   and   e8=[e1e2e3]D   we get

    [ABC]D=|A2A3A4B2B3B4C2C3C4|e5|A1A3A4B1B3B4C1C3C4|e6+|A1A2A4B1B2B4C1C2C4|e7|A1A2A3B1B2B3C1C2C3|e8

    The Determinant Product in Non Standard Basis of N1 Vectors of N-Dimensions (where N3) can be calculated similarly.
  3. Following examples demonstrates the calculation of the Determinant Product of Vectors A, B and C represented in Non Standard Basis e1, e2, e3 and e4 as give below

    e1=[1234]e2=[3245]e3=[5732]e4=[5143]

    A=3e12e2+1e3+3e4

    B=3e1+3e22e3+2e4

    C=1e1+5e2+2e32e4

    [ABC]D=|e1e2e3e4321333221522|

    [ABC]D=|213322522|[e2e3e4]D|313322122|[e1e3e4]D+|323332152|[e3e4e1]D|321332152|[e1e2e3]D

    Calculating the Determinants and setting e5=[e2e3e4]D,   e6=[e1e3e4]D,   e7=[e1e2e4]D   and   e8=[e1e2e3]D   we get

    [ABC]D=64e5+16e694e722e8

    The Basis Vectors e5, e6, e7 and e8 are calculated as follows

    e5=[e2e3e4]D=|^e1^e2^e3^e4324557325143|

    e5=|245732143|^e1|345532543|^e2+|325572513|^e3|324573514|^e4

    e5=51^e172^e2+93^e315^e4=[51729315]

    e6=[e1e3e4]D=|^e1^e2^e3^e4123457325143|

    e6=|234732143|^e1|134532543|^e2+|124572513|^e3|123573514|^e4

    e6=41^e166^e2+229^e3215^e4=[4166229215]

    e7=[e1e2e4]D=|^e1^e2^e3^e4123432455143|

    e7=|234245143|^e1|134345543|^e2+|124325513|^e3|123324514|^e4

    e7=29^e1+24^e2+61^e341^e4=[29246141]

    e8=[e1e2e3]D=|^e1^e2^e3^e4123432455732|

    e8=|234245732|^e1|134345532|^e2+|124325572|^e3|123324573|^e4

    e8=19^e1+30^e2217^e3+173^e4=[1930217173]

    Here ^e1, ^e2, ^e3 and ^e4 are Identity Orthonormal Basis Vectors.
Related Topics
Determinant Product of Vectors,    Introduction to Vector Algebra
© Invincible IDeAS. All Rights Reserved