Determinant Product in Arbitrary Non Standard Basis
Just like Cross Product, the Determinant Product of Vectors can be calculated for Vectors given in Any Arbitrary Non Standard Basis.
The following demonstrates the calculation of Determinant Product for 3 4-Dimensional Vectors \(\vec{A}\), \(\vec{B}\) and \(\vec{C}\) represented in any Arbitrary Non Standard Basis \(\vec{e_1}\), \(\vec{e_2}\), \(\vec{e_3}\) and \(\vec{e_4}\)
Setting \(\mathbf{\vec{e_5}}={[\mathbf{\vec{e_2}}\hspace{.2cm}\mathbf{\vec{e_3}}\hspace{.2cm}\mathbf{\vec{e_4}}]}_D\), \(\mathbf{\vec{e_6}}={[\mathbf{\vec{e_1}}\hspace{.2cm}\mathbf{\vec{e_3}}\hspace{.2cm}\mathbf{\vec{e_4}}]}_D\), \(\mathbf{\vec{e_7}}={[\mathbf{\vec{e_1}}\hspace{.2cm}\mathbf{\vec{e_2}}\hspace{.2cm}\mathbf{\vec{e_4}}]}_D\) and \(\mathbf{\vec{e_8}}={[\mathbf{\vec{e_1}}\hspace{.2cm}\mathbf{\vec{e_2}}\hspace{.2cm}\mathbf{\vec{e_3}}]}_D\) we get
The Determinant Product in Non Standard Basis of \(N-1\) Vectors of \(N\)-Dimensions (where \(N \geq 3\)) can be calculated similarly.
Following examples demonstrates the calculation of the Determinant Product of Vectors \(\vec{A}\), \(\vec{B}\) and \(\vec{C}\) represented in Non Standard Basis \(\vec{e_1}\), \(\vec{e_2}\), \(\vec{e_3}\) and \(\vec{e_4}\) as give below
Calculating the Determinants and setting \(\mathbf{\vec{e_5}}={[\mathbf{\vec{e_2}}\hspace{.2cm}\mathbf{\vec{e_3}}\hspace{.2cm}\mathbf{\vec{e_4}}]}_D\), \(\mathbf{\vec{e_6}}={[\mathbf{\vec{e_1}}\hspace{.2cm}\mathbf{\vec{e_3}}\hspace{.2cm}\mathbf{\vec{e_4}}]}_D\), \(\mathbf{\vec{e_7}}={[\mathbf{\vec{e_1}}\hspace{.2cm}\mathbf{\vec{e_2}}\hspace{.2cm}\mathbf{\vec{e_4}}]}_D\) and \(\mathbf{\vec{e_8}}={[\mathbf{\vec{e_1}}\hspace{.2cm}\mathbf{\vec{e_2}}\hspace{.2cm}\mathbf{\vec{e_3}}]}_D\) we get