\(\cos(A - B) = \cos(B - A)=\cos A \cos B + \sin A \sin B\)
\(\tan(A + B) = \frac{\sin(A + B)}{\cos(A + B)}=\frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}=\frac{\tan A + \tan B}{1 - \tan A \tan B}\)
\(\tan(A - B) = \frac{\sin(A - B)}{\cos(A - B)}=\frac{\sin A \cos B - \cos A \sin B}{\cos A \cos B + \sin A \sin B}=\frac{\tan A - \tan B}{1 + \tan A \tan B}\)
\(\cot(A + B) = \frac{\cos(A + B)}{\sin(A + B)}=\frac{\cos A \cos B - \sin A \sin B}{\sin A \cos B + \cos A \sin B}=\frac{\cot A \cot B - 1}{\cot B + \cot A}\)
\(\cot(A - B) = \frac{\cos(A - B)}{\sin(A - B)}=\frac{\cos A \cos B + \sin A \sin B}{\sin A \cos B - \cos A \sin B}=\frac{\cot A \cot B + 1}{\cot B - \cot A}\)
Hyperbolic Angle Sum/Difference Identities
\(\sinh(A + B) = -i\sin(iA + iB)=-i(\sin iA \cos iB + \cos iA \sin iB)=-i(i\sinh A \cosh B + \cosh A\hspace{.2cm}i\sinh B)=\sinh A \cosh B + \cosh A \sinh B\)
\(\sinh(A - B) = -i\sin(iA + iB)=-i(\sin iA \cos iB - \cos iA \sin iB)=-i(i\sinh A \cosh B - \cosh A\hspace{.2cm}i\sinh B) = \sinh A \cosh B - \cosh A \sinh B\)
\(\cosh(A + B) =\cos(iA + iB)=(\cos iA \cos iB - \sin iA \sin iB)=(\cosh A \cosh B - i\sinh A\hspace{.2cm}i\sinh B) = \cosh A \cosh B + \sinh A \sinh B\)
\(\cosh(A - B) =\cosh(B - A)=\cos(iA - iB)=(\cos iA \cos iB + \sin iA \sin iB)=(\cosh A \cosh B + i\sinh A\hspace{.2cm}i\sinh B) = \cosh A \cosh B - \sinh A \sinh B\)
\(\tanh(A + B) = \frac{\sinh(A + B)}{\cosh(A + B)}=\frac{\sinh A \cosh B + \cosh A \sinh B}{\cosh A \cosh B + \sinh A \sinh B}=\frac{\tanh A + \tanh B}{1 + \tanh A \tanh B}\)
\(\tanh(A - B) = \frac{\sinh(A - B)}{\cosh(A - B)}=\frac{\sinh A \cosh B - \cosh A \sinh B}{\cosh A \cosh B - \sinh A \sinh B}=\frac{\tanh A - \tanh B}{1 - \tanh A \tanh B}\)
\(\coth(A + B) = \frac{\cosh(A + B)}{\sinh(A + B)}=\frac{\cosh A \cosh B + \sinh A \sinh B}{\sinh A \cosh B + \cosh A \sinh B}=\frac{\coth A \coth B + 1}{\coth B + \coth A}\)
\(\coth(A - B) = \frac{\cosh(A - B)}{\sinh(A - B)}=\frac{\cosh A \cosh B - \sinh A \sinh B}{\sinh A \cosh B - \cosh A \sinh B}=\frac{\coth A \coth B - 1}{\coth B - \coth A}\)
Trigonometric Product to Sum Identities
\(\sin A \cos B=\frac{\sin(A+B)+\sin(A-B)}{2}\)
\(\cos A \sin B=\frac{\sin(A+B)-\sin(A-B)}{2}\)
\(\cos A \cos B=\frac{\cos(A+B)+\cos(A-B)}{2}\)
\(\sin A \sin B=\frac{\cos(A-B)-\cos(A+B)}{2}\)
Hyperbolic Product to Sum Identities
\(\sinh A \cosh B=\frac{\sinh(A+B)+\sinh(A-B)}{2}\)
\(\cosh A \sinh B=\frac{\sinh(A+B)-\sinh(A-B)}{2}\)
\(\cosh A \cosh B=\frac{\cosh(A+B)+\cosh(A-B)}{2}\)
\(\sinh A \sinh B=\frac{\cos(A+B)-\cosh(A-B)}{2}\)
Trigonometric Sum to Product Identities
\(\sin 2A + \sin 2B=2\sin(A+B)\cos(A-B)\hspace{.5cm}\Rightarrow \sin A + \sin B=2\sin(\frac{A+B}{2})\cos(\frac{A-B}{2})\)
Derivation
\(\sin(A+B)\cos(A-B)=(\sin A \cos B + \cos A \sin B)(\cos A \cos B + \sin A \sin B)\)
\(= {\cos}^2 B \sin A \cos A + {\sin}^2 A \sin B \cos B + {\cos}^2 A \sin B \cos B + {\sin}^2 B \sin A \cos A\)
\(=({\cos}^2 B + {\sin}^2 B) \sin A \cos A + ({\sin}^2 A + {\cos}^2 A)\sin B \cos B\)
\(=\sin A \cos A +\sin B \cos B=\frac{2\sin A \cos A +2\sin B \cos B}{2}=\frac{\sin 2A +\sin 2B}{2} \)
\(\cos 2B - \cos 2A=2\sin(A+B)\sin(A-B)\hspace{.5cm}\Rightarrow \cos B - \cos A=2\sin(\frac{A+B}{2})\sin(\frac{A-B}{2})\)
Derivation
\(\sin(A+B)\sin(A-B)=(\sin A \cos B + \cos A \sin B)(\sin A \cos B - \cos A \sin B)\)
\(= {\sin}^2 A {\cos}^2 B - \sin A \sin B \cos A \cos B + \sin A \sin B \cos A \cos B - {\cos}^2 A {\sin}^2 B\)
\(={\sin}^2 A {\cos}^2 B - {\cos}^2 A {\sin}^2 B= (1-{\cos}^2 A){\cos}^2 B - {\cos}^2 A {\sin}^2 B\)
\(={\cos}^2 B -{\cos}^2 A{\cos}^2 B - {\cos}^2 A {\sin}^2 B={\cos}^2 B-{\cos}^2 A({\sin}^2 B +{\cos}^2 B )\)
\(={\cos}^2 B-{\cos}^2 A=1-{\sin}^2 B -{\cos}^2 A=\frac{2-2{\sin}^2 B -2{\cos}^2 A}{2}=\frac{(1-2{\sin}^2 B) - (2{\cos}^2 A -1)}{2}=\frac{\cos 2B - \cos 2A}{2}\)
Trigonometric Identities Similar to Sum to Product Identities
\(\sin(2A + 2B)=2\sin(A+B)\cos(A+B)\)
Derivation
\(\sin(A+B)\cos(A+B)=(\sin A \cos B + \cos A \sin B)(\cos A \cos B - \sin A \sin B)\)
\(= {\cos}^2 B \sin A \cos A - {\sin}^2 A \sin B \cos B + {\cos}^2 A \sin B \cos B - {\sin}^2 B \sin A \cos A\)
\(=({\cos}^2 B - {\sin}^2 B) \sin A \cos A + ({\cos}^2 A - {\sin}^2 A)\sin B \cos B\)
\(=\sin A \cos A \cos 2B+\sin B \cos B \cos 2A=\frac{2\sin A \cos A \cos 2B+2\sin B \cos B \cos 2A}{2}=\frac{\sin 2A \cos 2B +\cos 2A \sin 2B}{2}=\frac{\sin (2A + 2B)}{2}\)
\(\Rightarrow \sin(2A + 2B)=2\sin(A+B)\cos(A+B)\)
\(\sin(2A - 2B)=2\sin(A-B)\cos(A-B)\)
Derivation
\(\sin(A-B)\cos(A-B)=(\sin A \cos B - \cos A \sin B)(\cos A \cos B + \sin A \sin B)\)
\(= {\cos}^2 B \sin A \cos A + {\sin}^2 A \sin B \cos B - {\cos}^2 A \sin B \cos B - {\sin}^2 B \sin A \cos A\)
\(=({\cos}^2 B - {\sin}^2 B) \sin A \cos A - ({\cos}^2 A - {\sin}^2 A)\sin B \cos B\)
\(=\sin A \cos A \cos 2B-\sin B \cos B \cos 2A=\frac{2\sin A \cos A \cos 2B-2\sin B \cos B \cos 2A}{2}=\frac{\sin 2A \cos 2B -\cos 2A \sin 2B}{2}=\frac{\sin (2A - 2B)}{2}\)
\(\Rightarrow \sin(2A - 2B)=2\sin(A-B)\cos(A-B)\)
Hyperbolic Sum to Product Identities
\(\sinh 2A + \sinh 2B=2\sinh(A+B)\cosh(A-B)\hspace{.5cm}\Rightarrow \sinh A + \sinh B=2\sinh(\frac{A+B}{2})\cosh(\frac{A-B}{2})\)
Derivation
\(\sinh(A+B)\cosh(A-B)=(\sinh A \cosh B + \cosh A \sinh B)(\cosh A \cosh B - \sinh A \sinh B)\)
\(= {\cosh}^2 B \sinh A \cosh A - {\sinh}^2 A \sinh B \cosh B + {\cosh}^2 A \sinh B \cosh B - {\sinh}^2 B \sinh A \cosh A\)
\(=({\cosh}^2 B - {\sinh}^2 B) \sinh A \cosh A + ( {\cosh}^2 A- {\sinh}^2 A)\sinh B \cosh B\)
\(=\sinh A \cosh A +\sinh B \cosh B=\frac{2\sinh A \cosh A +2\sinh B \cosh B}{2}=\frac{\sinh 2A +\sinh 2B}{2} \)
\(\cosh 2A - \cosh 2B=2\sinh(A+B)\sinh(A-B)\hspace{.5cm}\Rightarrow \cosh A - \cosh B=2\sinh(\frac{A+B}{2})\sinh(\frac{A-B}{2})\)
Derivation
\(\sinh(A+B)\sinh(A-B)=(\sinh A \cosh B + \cosh A \sinh B)(\sinh A \cosh B - \cosh A \sinh B)\)
\(= {\sinh}^2 A {\cosh}^2 B - \sinh A \sinh B \cosh A \cosh B + \sinh A \sinh B \cosh A \cosh B - {\cosh}^2 A {\sinh}^2 B\)
\(={\sinh}^2 A {\cosh}^2 B - {\cosh}^2 A {\sinh}^2 B= ({\cosh}^2 A-1){\cosh}^2 B - {\cosh}^2 A {\sinh}^2 B\)
\(={\cosh}^2 A{\cosh}^2 B -{\cosh}^2 B - {\cosh}^2 A {\sinh}^2 B={\cosh}^2 A({\cosh}^2 B -{\sinh}^2 B ) -{\cosh}^2 B\)
\(={\cosh}^2 A-{\cosh}^2 B=1+{\sinh}^2 A -{\cosh}^2 B=\frac{2+2{\sinh}^2 A -2{\cosh}^2 B}{2}=\frac{(1+2{\sinh}^2 A) - (2{\cosh}^2 B -1)}{2}=\frac{\cosh 2A - \cosh 2B}{2}\)
Hyperbolic Identities Similar to Sum to Product Identities
\(\sinh(2A + 2B)=2\sinh(A+B)\cosh(A+B)\)
Derivation
\(\sinh(A+B)\cosh(A+B)=(\sinh A \cosh B + \cosh A \sinh B)(\cosh A \cosh B + \sinh A \sinh B)\)
\(= {\cosh}^2 B \sinh A \cosh A + {\sinh}^2 A \sinh B \cosh B + {\cosh}^2 A \sinh B \cosh B + {\sinh}^2 B \sinh A \cosh A\)
\(=({\cosh}^2 B + {\sinh}^2 B) \sinh A \cosh A + ({\cosh}^2 A + {\sinh}^2 A)\sinh B \cosh B\)
\(=\sinh A \cosh A \cosh 2B+\sin B \cos B \cosh 2A=\frac{2\sinh A \cosh A \cosh 2B+2\sinh B \cosh B \cosh 2A}{2}=\frac{\sinh 2A \cosh 2B +\cosh 2A \sinh 2B}{2}=\frac{\sinh (2A + 2B)}{2}\)
\(\sinh(A-B)\cosh(A-B)=(\sinh A \cosh B - \cosh A \sinh B)(\cosh A \cosh B - \sinh A \sinh B)\)
\(= {\cosh}^2 B \sin A \cos A - {\sinh}^2 A \sinh B \cosh B - {\cosh}^2 A \sinh B \cosh B + {\sinh}^2 B \sinh A \cosh A\)
\(=({\cosh}^2 B + {\sinh}^2 B) \sin A \cos A - ({\cosh}^2 A + {\sinh}^2 A)\sinh B \cosh B\)
\(=\sinh A \cosh A \cosh 2B-\sinh B \cosh B \cosh 2A=\frac{2\sinh A \cosh A \cosh 2B-2\sinh B \cosh B \cosh 2A}{2}=\frac{\sinh 2A \cosh 2B -\cosh 2A \sinh 2B}{2}=\frac{\sinh (2A - 2B)}{2}\)