mail  mail@stemandmusic.in
    
call  +91-9818088802
Donate

Lorentz Transformation of Space-Time Coordinates

  1. Lorentz Transformation is used for Velocity Transformation of Space-Time Coordinates in Special Relativity
  2. Lorentz Transformation of Space-Time Coordinate (\(x\), \(y\), \(z\) , \(t\)) (or (\(t\), \(x\), \(y\), \(z\)) ), on application of Velocity \(\vec{V}\) is given as

    \(\begin{bmatrix}ct'\\ x' \\ y' \\ z'\end{bmatrix}=\begin{bmatrix}\gamma & \gamma {\Large \frac{v_x}{c}} & \gamma {\Large \frac{v_y}{c}} & \gamma {\Large \frac{v_z}{c}} \\ \gamma{\Large \frac{v_x}{c}} & 1+(\gamma-1) {n_x}^2 & (\gamma-1) n_xn_y & (\gamma-1) n_xn_z \\ \gamma{\Large \frac{v_y}{c}} & (\gamma-1) n_yn_x & 1 + (\gamma-1) {n_y}^2 & (\gamma-1) n_yn_z \\ \gamma{\Large \frac{v_z}{c}} & (\gamma-1) n_zn_x & (\gamma-1) n_zn_y & 1+(\gamma-1) {n_z}^2\end{bmatrix}\begin{bmatrix}ct \\ x \\ y \\ z\end{bmatrix}\)   ...(1)

    \(\Rightarrow \begin{bmatrix}ct'\\ \vec{R'}\end{bmatrix}=\begin{bmatrix}\gamma & \gamma {\Large \frac{\vec{V}^T}{c}} \\ \gamma{\Large \frac{\vec{V}}{c}} & I+(\gamma-1) \hat{n}{\hat{n}}^T\end{bmatrix}\begin{bmatrix}ct\\ \vec{R}\end{bmatrix}\)   ...(2)

    which implies

    \(ct'=\gamma(ct + {\Large \frac{\vec{V}\cdot\vec{R}}{c} })\hspace{2mm}\Rightarrow t'= \gamma(t + {\Large \frac{\vec{V}\cdot\vec{R}}{c^2} })\)   ...(3)

    \(\vec{R'}= \vec{R} + (\gamma - 1) (\vec{R}.\hat{n})\hat{n} + \gamma\vec{V}t\)   ...(4)

    where

    \(c = \) Speed of Light in Vacuum

    \(t = \) Time Value of the Given Space-Time Coordinate

    \(t' =\) Time Value of the Transformed Space-Time Coordinate

    \(\vec{R} =\) Position Vector corresponding to Variables \(x\), \(y\) and \(z\) of Given Space-Time Coordinate

    \(\vec{R}' =\) Position Vector corresponding to Transformed Variables \(x'\), \(y'\) and \(z'\) of Transformed Space-Time Coordinate

    \(\vec{V} =\) Applied Velocity Vector

    \(v_x, v_y, v_z =\) Components of Vector \(\vec{V}\)

    \(\hat{n} =\) Unit Vector in the Direction of \(\vec{V}\)

    \(n_x, n_y, n_z =\) Components of Unit Vector \(\hat{n}\)

    \(|\vec{V}| =\) Speed corresponding to Applied Velocity Vector

    \(\gamma =\) Lorentz factor given by \(\sqrt{{\Large \frac{1}{1-\frac{|\vec{V}|^2}{c^2}}}}\). \(\gamma \approx 1\) when \(|\vec{V}| \lll c\) and \( > 1\) when \(|\vec{V}|\) is Near to \(c\)

  3. When \(|\vec{V}| \lll c\), \(\gamma \approx 1\), and Lorentz Transformation defaults to Galilean Transformation as follows

    \(\begin{bmatrix}ct'\\ x' \\ y' \\ z'\end{bmatrix}=\begin{bmatrix}1 & {\Large \frac{v_x}{c}} & {\Large \frac{v_y}{c}} & {\Large \frac{v_z}{c}} \\ {\Large \frac{v_x}{c}} & 1 & 0 & 0 \\ {\Large \frac{v_y}{c}} & 0 & 1 & 0 \\ {\Large \frac{v_z}{c}} & 0 & 0 & 1\end{bmatrix}\begin{bmatrix}ct \\ x \\ y \\ z\end{bmatrix}\)   ...(5)

    \(\Rightarrow \begin{bmatrix}ct'\\ \vec{R'}\end{bmatrix}=\begin{bmatrix}1 & {\Large \frac{\vec{V}^T}{c}} \\ {\Large \frac{\vec{V}}{c}} & I\end{bmatrix}\begin{bmatrix}ct\\ \vec{R}\end{bmatrix}\)   ...(6)

    which implies

    \(ct'=(ct + {\Large \frac{\vec{V}\cdot\vec{R}}{c} })\hspace{2mm}\Rightarrow t'= (t + {\Large \frac{\vec{V}\cdot\vec{R}}{c^2} })\)   ...(4)

    Since \(|\vec{V}| \lll c\), \({\Large \frac{\vec{V}\cdot\vec{R}}{c} } \approx 0\) and hence,

    \(ct'=ct \hspace{2mm}\Rightarrow t'= t\)   ...(6)

    \(\vec{R'}= \vec{R} + \vec{V}t\)   ...(7)

  4. The Inverse of Lorentz Transformation Matrix for Velocity \(\vec{V}\) (as given in equation (1) and (2) above) is Lorentz Transformation Matrix for Velocity \(-\vec{V}\) as given below

    \({\begin{bmatrix}\gamma & \gamma {\Large \frac{v_x}{c}} & \gamma {\Large \frac{v_y}{c}} & \gamma {\Large \frac{v_z}{c}} \\ \gamma{\Large \frac{v_x}{c}} & 1+(\gamma-1) {n_x}^2 & (\gamma-1) n_xn_y & (\gamma-1) n_xn_z \\ \gamma{\Large \frac{v_y}{c}} & (\gamma-1) n_yn_x & 1 + (\gamma-1) {n_y}^2 & (\gamma-1) n_yn_z \\ \gamma{\Large \frac{v_z}{c}} & (\gamma-1) n_zn_x & (\gamma-1) n_zn_y & 1+(\gamma-1) {n_z}^2\end{bmatrix}}^{-1} = \begin{bmatrix}\gamma & -\gamma {\Large \frac{v_x}{c}} & -\gamma {\Large \frac{v_y}{c}} & -\gamma {\Large \frac{v_z}{c}} \\ -\gamma{\Large \frac{v_x}{c}} & 1+(\gamma-1) {n_x}^2 & (\gamma-1) n_xn_y & (\gamma-1) n_xn_z \\ -\gamma{\Large \frac{v_y}{c}} & (\gamma-1) n_yn_x & 1 + (\gamma-1) {n_y}^2 & (\gamma-1) n_yn_z \\ -\gamma{\Large \frac{v_z}{c}} & (\gamma-1) n_zn_x & (\gamma-1) n_zn_y & 1+(\gamma-1) {n_z}^2\end{bmatrix} \)   ...(8)

    \(\Rightarrow {\begin{bmatrix}\gamma & \gamma {\Large \frac{\vec{V}^T}{c}} \\ \gamma{\Large \frac{\vec{V}}{c}} & I+(\gamma-1) \hat{n}{\hat{n}}^T\end{bmatrix}}^{-1}= \begin{bmatrix}\gamma & -\gamma {\Large \frac{\vec{V}^T}{c}} \\ -\gamma{\Large \frac{\vec{V}}{c}} & I+(\gamma-1) \hat{n}{\hat{n}}^T\end{bmatrix} \)   ...(9)

    Lorentz Transformation of Space-Time Coordinate (\(x\), \(y\), \(z\) , \(t\)) (or (\(t\), \(x\), \(y\), \(z\)) ) on application of Velocity \(-\vec{V}\) is given as

    \(ct'=\gamma(ct - {\Large \frac{\vec{V}\cdot\vec{R}}{c} })\hspace{2mm}\Rightarrow t'= \gamma(t - {\Large \frac{\vec{V}\cdot\vec{R}}{c^2} })\)   ...(10)

    \(\vec{R'}= \vec{R} + (\gamma - 1) (\vec{R}.\hat{n})\hat{n} - \gamma\vec{V}t\)   ...(11)
Related Calculators
Lorentz Transformation Matrix Calculator,    Lorentz Transformation of Space-Time Coordinates Calculator
© Invincible IDeAS. All Rights Reserved