Einstein Velocity Addition/Subtraction Formula for Special Relativity
Einstein Velocity Addition/Subtraction Formula is used for Addition and Subtraction of Velocities whoes Magnitudes are comparable to the Speed of Light (i.e. 299,792,458 m/s).
Following are the formulae for Addition/Subtraction of 2 Velocities \(\vec{\mathbf{u}}\) and \(\vec{\mathbf{v}}\)
If the 2 Velocities \(\vec{\mathbf{u}}\) and \(\vec{\mathbf{v}}\) are Parallel, which implies \(\vec{\mathbf{u}}=\vec{\mathbf{u}}_{||}\) and \(\vec{\mathbf{v}}=\vec{\mathbf{v}}_{||}\), then the Velocity Addition/Subtraction formula reduces to
If the 2 Velocities \(\vec{\mathbf{u}}\) and \(\vec{\mathbf{v}}\) are Perpendicular, which implies \(\vec{\mathbf{u}}_{||}=0\) and \(\vec{\mathbf{v}}_{||}=0\) and \(\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}=0\), then the Velocity Addition/Subtraction formula reduces to
Relative Velocity of \(\vec{\mathbf{u}}\) with respect to \(\vec{\mathbf{v}}\) is calculated as \(\vec{\mathbf{u}}\ominus\vec{\mathbf{v}}\). Similarly, Relative Velocity of \(\vec{\mathbf{v}}\) with respect to \(\vec{\mathbf{u}}\) is calculated as \(\vec{\mathbf{v}}\ominus\vec{\mathbf{u}}\).
Unless \(\vec{\mathbf{u}}\) and \(\vec{\mathbf{v}}\) are Parallel \(\vec{\mathbf{u}}\hspace{.1cm}\oplus\hspace{.1cm}\vec{\mathbf{v}} \neq \vec{\mathbf{v}}\hspace{.1cm}\oplus\hspace{.1cm}\vec{\mathbf{u}}\)
and \(\vec{\mathbf{u}}\hspace{.1cm}\ominus\hspace{.1cm}\vec{\mathbf{v}} \neq - (\vec{\mathbf{v}}\hspace{.1cm}\ominus\hspace{.1cm}\vec{\mathbf{u}})\)
\(|\vec{\mathbf{u}}\hspace{.1cm}\oplus\hspace{.1cm}\vec{\mathbf{v}}| = |\vec{\mathbf{v}}\hspace{.1cm}\oplus\hspace{.1cm}\vec{\mathbf{u}}|\)
and \(|\vec{\mathbf{u}}\hspace{.1cm}\ominus\hspace{.1cm}\vec{\mathbf{v}}| = |\vec{\mathbf{v}}\hspace{.1cm}\ominus\hspace{.1cm}\vec{\mathbf{u}}|\)
The angle \(\theta\) between the Vectors \(\vec{\mathbf{u}}\hspace{.1cm}\oplus\hspace{.1cm}\vec{\mathbf{v}}\) and \(\vec{\mathbf{v}}\hspace{.1cm}\oplus\hspace{.1cm}\vec{\mathbf{u}}\) is calculated as
The angle \(\psi\) is the angle between Vectors \(\vec{\mathbf{u}}\) and \(\vec{\mathbf{v}}\). The angle \(\theta\) is known as the Wigner Rotation Angle.
The angle \(\phi\) between the Vectors \(\vec{\mathbf{u}}\hspace{.1cm}\ominus\hspace{.1cm}\vec{\mathbf{v}}\) and \(\vec{\mathbf{v}}\hspace{.1cm}\ominus\hspace{.1cm}\vec{\mathbf{u}}\) is calculated as