Conic Section Rotation refers to Changing the Orientation of a Conic Section Object. This is done by
rotating the General Quadratic Equation in 2 Variables representing the Conic Section.
The General Quadratic Equation in 2 Variables representing a Conic Section is given as follows
\(Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0\) ...(1)
On rotating the above equation (1) Counter Clockwise by an Angle \(\theta\) as per the Rule of Rotation of Equations, the updated equation is given as
\(A{(x\cos\theta + y \sin \theta)}^2 + B(x\cos\theta + y \sin\theta)(y \cos\theta - x \sin\theta) + C{(y \cos\theta - x \sin\theta)}^2 + D(x\cos\theta + y \sin\theta) + E(y \cos\theta - x \sin\theta) + F = 0\)
\(\Rightarrow A(x^2 {\cos}^2\theta + y^2 {\sin}^2\theta + 2xy \sin\theta \cos\theta) + B(xy {\cos}^2\theta - xy {\sin}^2\theta - x^2 \sin\theta \cos\theta + y^2 \sin\theta \cos\theta) + C(y^2 {\cos}^2\theta + x^2 {\sin}^2\theta - 2xy \sin\theta \cos\theta) \\
+ D \cos\theta x + D \sin\theta y + E \cos\theta y - E \sin\theta x + F = 0\)
\(\Rightarrow (A{\cos}^2\theta - B \sin\theta \cos\theta + C {\sin}^2\theta) x^2 + (2A \sin\theta \cos\theta + B{\cos}^2\theta - B{\sin}^2\theta - 2C \sin\theta \cos\theta) xy + (A{\sin}^2\theta + B \sin\theta \cos\theta + C {\cos}^2\theta) y^2 \\
+ (D \cos\theta - E \sin\theta) x + (E \cos\theta + D \sin\theta) y + F = 0\)
\(\Rightarrow (A{\cos}^2\theta - B \sin\theta \cos\theta + C {\sin}^2\theta) x^2 + ((A-C) \sin 2\theta + B \cos 2\theta) xy + (A{\sin}^2\theta + B \sin\theta \cos\theta + C {\cos}^2\theta) y^2
+ (D \cos\theta - E \sin\theta) x + (E \cos\theta + D \sin\theta) y + F = 0\) ...(2)
\(A_1=A{\cos}^2\theta - B \sin\theta \cos\theta + C {\sin}^2\theta\)
\(B_1=(A-C) \sin 2\theta + B \cos 2\theta\)
\(C_1=A{\sin}^2\theta + B \sin\theta \cos\theta + C {\cos}^2\theta\)
\(D_1=D \cos\theta - E \sin\theta\)
\(E_1=E \cos\theta + D \sin\theta\)
The equations (2) and (3) above give the Equation of the Conic Section Rotated Counter Clockwise by an Angle \(\theta\).
Please note the Rotating a Conic Section Does Not Change the Value of its Constant of the Equation. However it Changes the Values of its Quadratic Co-efficients (\(x^2, xy\) and \(y^2\))
and its Linear Co-efficients (\(x\) and \(y\)).
Also note that Clockwise Rotation of the Conic Section can be done by replacing \(\theta\) with \(-\theta\) in all the equations above.