Equation Form | Vector Form |
\(x_p = x_c - D \hat{a} \) \(y_p = y_c - D \hat{b} \) |
\( \begin{bmatrix} x_p \\ y_p \end{bmatrix} = \begin{bmatrix} x_c \\ y_c \end{bmatrix} - D \begin{bmatrix} \hat{a} \\ \hat{b}\end{bmatrix} \) |
(\(\hat{a},\hat{b}\))=Unit Vectors corresponding to coefficients a and b of Line \(D\)= Signed Distance from Point to Line=\(\frac{ax_c+by_c+c}{\sqrt{a^2+b^2}}\) \((x_p,y_p)\)=Coordinates of the Projected Point |
Equation Form | Vector Form |
\(x_p = x_c - D \hat{a} \) \(y_p = y_c - D \hat{b} \) \(z_p = z_c - D \hat{c} \) |
\( \begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix} = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} - D \begin{bmatrix} \hat{a} \\ \hat{b} \\ \hat{c} \end{bmatrix} \) |
(\(\hat{a},\hat{b},\hat{c}\))=Unit Vectors corresponding to coefficients a, b and c of Plane \(D\)= Signed Distance from Point to Plane=\(\frac{ax_c+by_c + cz_c + d}{\sqrt{a^2+b^2+c^2}}\) \((x_p,y_p,z_p)\)=Coordinates of the Projected Point |
Equation Form | Vector Form |
\(x_{1p} = x_{1c} - D \hat{a_1} \) \(x_{2p} = x_{2c} - D \hat{a_2} \) \(x_{3p} = x_{3c} - D \hat{a_3} \) \(\vdots\) \(x_{np} = x_{nc} - D \hat{a_n} \) |
\( \begin{bmatrix} x_{1p} \\ x_{2p} \\ x_{3p} \\ \vdots \\ x_{np} \end{bmatrix} = \begin{bmatrix} x_{1c} \\ x_{2c} \\ x_{3c} \\ \vdots \\ x_{nc} \end{bmatrix} - D \begin{bmatrix} \hat{a_1} \\ \hat{a_2} \\ \hat{a_3} \\ \vdots \\ \hat{a_n} \end{bmatrix} \) |
(\(\hat{a_1},\hat{a_2},\hat{a_3},\cdots,\hat{a_n}\))=Unit Vectors corresponding to coefficients \(a_1\), \(a_2\), \(a_3\), \(\cdots\), \(a_n\) of Line / Plane / Hyper-Plane \(D\)= Signed Distance from Point to Line / Plane / Hyperplane=\(\frac{a_1x_{1c}\hspace{1mm}+\hspace{1mm}a_2x_{2c}\hspace{1mm}+\hspace{1mm}a_3x_{3c}\hspace{1mm}+\hspace{1mm}\cdots\hspace{1mm}+\hspace{1mm}a_nx_{nc}\hspace{1mm}+\hspace{1mm}a_{n+1}}{\sqrt{{a_1}^2\hspace{1mm}+\hspace{1mm}{a_2}^2\hspace{1mm}+\hspace{1mm}{a_3}^2\hspace{1mm}+\hspace{1mm}\cdots\hspace{1mm}+\hspace{1mm}{a_n}^2}}\) (\(x_{1p},x_{2p},x_{3p},\cdots,x_{np}\))=Coordinates of the Projected Point |