mail  mail@stemandmusic.in
    
call  +91-9818088802
Donate

Reflection

  1. Reflections are Non Deformative Transformation. It involves Determining the Mirror Image of the Object across a Point or a Line in 2D and across a Point, a Line or a Plane in 3D. In this transformation any changes applied to a Coordinate Point can be directly applied to the Equations of Objects as well.
  2. Reflection in 2D, 3D or Higher Dimension of a Point \(C\) having Position Vector \(\vec{C}\) across any Point \(P\) having Position Vector \(\vec{P}\):

    \( \vec{C_R}= 2\vec{P} -\vec{C}\)

    where \(\vec{C_R}\)=Position Vector of Reflected Point \(C_R\). The Point \(P\) is called the Point of Projection and it is Mid-Point of the Points \(C\) and \(C_R\).

    \( \vec{P}= \frac{\vec{C}+\vec{C_R}}{2}\)
  3. Reflection in 2D, 3D or Higher Dimensions of a Point \(C\) having Position Vector \(\vec{C}\) across any Line having Direction Ratio \(\vec{A}\) containing a Point \(B\) having Position Vector \(\vec{B}\):

    \( \vec{C_R}=\vec{C} - 2{\vec{CB}}_\perp =\vec{C} - 2 (\vec{CB} - {\vec{CB}}_{||}) =\vec{C} - 2 (\vec{CB} - \frac{(\vec{A} \cdot \vec{CB})\vec{A}}{{|\vec{A}|}^2})\)   ...(In 2D, 3D and Higher Dimensions)
    \( \vec{C_R}=\vec{C} - 2\frac{\vec{A} \times (\vec{CB}\times \vec{A})}{{|\vec{A}|}^2} =\vec{C} - 2\frac{(\vec{A} \times \vec{CB})\times \vec{A}}{{|\vec{A}|}^2} \)   ...(In 2D and 3D only)

    where \(\vec{CB}=\vec{C}-\vec{B}\), \(\vec{C_R}\)=Position Vector of Reflected Point \(C_R\)

    Please Check the Derivation of the Formula.
  4. Reflection of a Point \(C\) having Position Vector \(\vec{C}\) across any Line in 2D (or across any Plane in 3D or across any Hyper-Plane in Higher Dimensions) having Direction Ratio of Normal \(\vec{A}\) containing a Point \(B\) having Position Vector \(\vec{B}\):

    \( \vec{C_R}= \vec{C} - 2\vec{CB}_{||}= \vec{C} - 2 (\frac{(\vec{A} \cdot \vec{CB}) \vec{A} }{{|\vec{A}|}^2})\)

    where \(\vec{CB}=\vec{C}-\vec{B}\), \(\vec{C_R}\)=Position Vector of Reflected Point \(C_R\)

    Please Check the Derivation of the Formula.
  5. Reflection of a Point having Coordinates (\(x_c,y_c\)) in 2D across Line \(ax + by + c=0\):
    Equation FormMatrix Form
    \(x_r = x_c - 2D \hat{a} \)
    \(y_r = y_c - 2D \hat{b} \)
    \( \begin{bmatrix} x_r \\ y_r \end{bmatrix} = \begin{bmatrix} x_c \\ y_c \end{bmatrix} - 2D \begin{bmatrix} \hat{a} \\ \hat{b}\end{bmatrix} \)
    (\(\hat{a},\hat{b}\))=Unit Vectors corresponding to coefficients a and b of Line
    \(D\)= Signed Distance from Point to Line=\(\frac{ax_c+by_c+c}{\sqrt{a^2+b^2}}\)
    \((x_r,y_r)\)=Coordinates of the Reflected Point
    Please Note that this formula is the derived from formula given in Point 4
  6. Reflection of a Point having Coordinates (\(x_c,y_c,z_c\)) in 3D across Plane \(ax + by + cz +d=0\):
    Equation FormMatrix Form
    \(x_r = x_c - 2D \hat{a} \)
    \(y_r = y_c - 2D \hat{b} \)
    \(z_r = z_c - 2D \hat{c} \)
    \( \begin{bmatrix} x_r \\ y_r \\ z_r \end{bmatrix} = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} - 2D \begin{bmatrix} \hat{a} \\ \hat{b} \\ \hat{c} \end{bmatrix} \)
    (\(\hat{a},\hat{b},\hat{c}\))=Unit Vectors corresponding to coefficients a, b and c of Plane
    \(D\)= Signed Distance from Point to Plane=\(\frac{ax_c+by_c + cz_c + d}{\sqrt{a^2+b^2+c^2}}\)
    \((x_r,y_r,z_r)\)=Coordinates of the Reflected Point
    Please Note that this formula is the derived from formula given in Point 4
  7. Reflection in 2D across Coordinate Axes or across Origin:
    Reflection TypeEquation FormMatrix Form
    Across x axis \(x' = x\)
    \(y' = -y \)
    \(\begin{bmatrix} 1 & 0 \\0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix} \)
    Across y axis \(x' = -x\)
    \(y' = y \)
    \(\begin{bmatrix} -1 & 0 \\0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}\)
    Across Origin \(x' = -x\)
    \(y' = -y \)
    \(\begin{bmatrix} -1 & 0 \\0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}\)
  8. Reflection in 3D across a Coordinate Plane or across a Coordinate Axis (i.e. 2 Coordinate Planes) or across Origin:
    Reflection TypeEquation FormMatrix Form
    Across xy plane \(x' = x\)
    \(y' = y \)
    \(z' = -z \)
    \(\begin{bmatrix} 1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & -1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}\)
    Across yz plane \(x' = -x\)
    \(y' = y \)
    \(z' = z \)
    \(\begin{bmatrix} -1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}\)
    Across zx plane \(x' = x\)
    \(y' = -y \)
    \(z' = z \)
    \(\begin{bmatrix} 1 & 0 & 0\\0 & -1 & 0\\0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}\)
    Across xy & yz plane (y Axis) \(x' = -x\)
    \(y' = y \)
    \(z' = -z \)
    \(\begin{bmatrix} -1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & -1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}\)
    Across yz & zx plane (z Axis) \(x' = -x\)
    \(y' = -y \)
    \(z' = z \)
    \(\begin{bmatrix} -1 & 0 & 0\\0 & -1 & 0\\0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}\)
    Across xy & zx plane (x Axis) \(x' = x\)
    \(y' = -y \)
    \(z' = -z \)
    \(\begin{bmatrix} 1 & 0 & 0\\0 & -1 & 0\\0 & 0 & -1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}\)
    Across Origin (0,0,0) \(x' = -x\)
    \(y' = -y \)
    \(z' = -z \)
    \(\begin{bmatrix} -1 & 0 & 0\\0 & -1 & 0\\0 & 0 & -1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}\)
  9. Reflection in 2D across Lines \(x=constant\) or \(y=constant\) or Arbitrary Point \( (o_x,o_y) \):
    Reflection TypeEquation FormMatrix Form
    Across line x=c
    (c=constant)
    \(x' = 2c - x \)
    \(y' = y \)
    \(\begin{bmatrix} - 1 & 0 & 2c \\0 & 1 & 0 \\0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ 1\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1\end{bmatrix}\)
    Across line y=c
    (c=constant)
    \(x' = x\)
    \(y' = 2c-y \)
    \(\begin{bmatrix} 1 & 0 & 0 \\0 & -1 & 2c \\0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ 1\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1\end{bmatrix}\)
    Across Point \((o_x,o_y)\) \(x' = 2o_x - x\)
    \(y' = 2o_y - y \)
    \(\begin{bmatrix} -1 & 0 & 2o_x \\0 & -1 & 2o_y \\0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ 1\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1\end{bmatrix}\)
    Please note that when \( c, o_x,o_y \) are 0 these equations are similar to reflection with respect to coordinate axes or the origin
  10. Reflection in 3D across Planes \(x=constant\) or \(y=constant\) or \(z=constant\) or Arbitrary Point \( (o_x,o_y,o_z) \):
    Reflection TypeEquation FormMatrix Form
    Across plane x=c
    (c=constant)
    \(x' = 2c - x \)
    \(y' = y \)
    \(z' = z \)
    \(\begin{bmatrix} - 1 & 0 & 0 & 2c \\0 & 1 & 0 & 0 \\0 & 0 & 1 & 0 \\0 & 0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 1\end{bmatrix}\)
    Across plane y=c
    (c=constant)
    \(x' = x\)
    \(y' = 2c-y \)
    \(z' = z \)
    \(\begin{bmatrix} 1 & 0 & 0 & 0\\0 & -1 & 0 & 2c \\0 & 0 & 1 & 0 \\0 & 0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 1\end{bmatrix}\)
    Across plane z=c
    (c=constant)
    \(x' = x\)
    \(y' = y \)
    \(z' = 2c-z \)
    \(\begin{bmatrix} 1 & 0 & 0 & 0 \\0 & 1 & 0 & 0 \\0 & 0 & -1 & 2c \\0 & 0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 1\end{bmatrix}\)
    Across Point \((o_x,o_y,o_z)\) \(x' = 2o_x - x\)
    \(y' = 2o_y - y \)
    \(z' = 2o_z - z \)
    \(\begin{bmatrix} -1 & 0 & 0 & 2o_x \\0 & -1 & 0 & 2o_y \\0 & 0 & -1 & 2o_z \\0 & 0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 1\end{bmatrix}\)
    Please note that when \( c, o_x,o_y,o_z \) are 0 these equations are similar to reflection with respect to coordinate planes or the origin
  11. Reflection in 2D across Lines \(ax + by=0\) or \(ax + by +c =0\) where \(a\) and \(b\) are components of Unit Vector Normal to the Lines:
    Reflection TypeMatrix Form
    Across line \(ax + by=0\) \(\begin{bmatrix} 1 - 2a^2 & -2ab\\-2ab & 1-2b^2 \end{bmatrix} \begin{bmatrix} x \\ y\end{bmatrix} = \begin{bmatrix} x' \\ y'\end{bmatrix}\)
    Across line \(ax + by + c=0\) \(\begin{bmatrix} 1 - 2a^2 & -2ab & -2ac\\-2ab & 1-2b^2 & -2bc\\0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ 1\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1\end{bmatrix}\)
  12. Reflection in 3D across Planes \(ax + by +cz =0\) or \(ax + by +cz + d=0\) where \(a\), \(b\) and \(c\) are components of Unit Vector Normal to the Planes:
    Reflection TypeMatrix Form
    Across plane \(ax + by + cz=0\) \(\begin{bmatrix} 1 - 2a^2 & -2ab & -2ac\\-2ab & 1-2b^2 & -2bc \\-2ac & -2bc & 1-2c^2 \end{bmatrix} \begin{bmatrix} x \\ y \\z\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z'\end{bmatrix}\)
    Across plane \(ax + by + cz + d=0\) \(\begin{bmatrix} 1 - 2a^2 & -2ab & -2ac & -2ad\\-2ab & 1-2b^2 & -2bc & -2bd\\-2ac & -2bc & 1-2c^2 & -2cd \\0 & 0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\z \\ 1\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 1\end{bmatrix}\)
Related Topics and Calculators
Derivation of Reflection Formula Across a Line,    Derivation of Reflection Formula Across a Line in 2D/Plane in 3D/Hyper-Plane in Higher Dimensions,    Projection of Point on a Line/Plane/Hyper-Plane,    Distance of Point from a Line/Plane/Hyper-Plane
© Invincible IDeAS. All Rights Reserved