Equation Form | Matrix Form |
\(x_r = x_c - 2D \hat{a} \) \(y_r = y_c - 2D \hat{b} \) |
\( \begin{bmatrix} x_r \\ y_r \end{bmatrix} = \begin{bmatrix} x_c \\ y_c \end{bmatrix} - 2D \begin{bmatrix} \hat{a} \\ \hat{b}\end{bmatrix} \) |
(\(\hat{a},\hat{b}\))=Unit Vectors corresponding to coefficients a and b of Line \(D\)= Signed Distance from Point to Line=\(\frac{ax_c+by_c+c}{\sqrt{a^2+b^2}}\) \((x_r,y_r)\)=Coordinates of the Reflected Point |
|
Please Note that this formula is the derived from formula given in Point 4 |
Equation Form | Matrix Form |
\(x_r = x_c - 2D \hat{a} \) \(y_r = y_c - 2D \hat{b} \) \(z_r = z_c - 2D \hat{c} \) |
\( \begin{bmatrix} x_r \\ y_r \\ z_r \end{bmatrix} = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} - 2D \begin{bmatrix} \hat{a} \\ \hat{b} \\ \hat{c} \end{bmatrix} \) |
(\(\hat{a},\hat{b},\hat{c}\))=Unit Vectors corresponding to coefficients a, b and c of Plane \(D\)= Signed Distance from Point to Plane=\(\frac{ax_c+by_c + cz_c + d}{\sqrt{a^2+b^2+c^2}}\) \((x_r,y_r,z_r)\)=Coordinates of the Reflected Point |
|
Please Note that this formula is the derived from formula given in Point 4 |
Reflection Type | Equation Form | Matrix Form |
Across x axis |
\(x' = x\) \(y' = -y \) |
\(\begin{bmatrix} 1 & 0 \\0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix} \) |
Across y axis |
\(x' = -x\) \(y' = y \) |
\(\begin{bmatrix} -1 & 0 \\0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}\) |
Across Origin |
\(x' = -x\) \(y' = -y \) |
\(\begin{bmatrix} -1 & 0 \\0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}\) |
Reflection Type | Equation Form | Matrix Form |
Across xy plane |
\(x' = x\) \(y' = y \) \(z' = -z \) |
\(\begin{bmatrix} 1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & -1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}\) |
Across yz plane |
\(x' = -x\) \(y' = y \) \(z' = z \) |
\(\begin{bmatrix} -1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}\) |
Across zx plane |
\(x' = x\) \(y' = -y \) \(z' = z \) |
\(\begin{bmatrix} 1 & 0 & 0\\0 & -1 & 0\\0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}\) |
Across xy & yz plane (y Axis) |
\(x' = -x\) \(y' = y \) \(z' = -z \) |
\(\begin{bmatrix} -1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & -1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}\) |
Across yz & zx plane (z Axis) |
\(x' = -x\) \(y' = -y \) \(z' = z \) |
\(\begin{bmatrix} -1 & 0 & 0\\0 & -1 & 0\\0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}\) |
Across xy & zx plane (x Axis) |
\(x' = x\) \(y' = -y \) \(z' = -z \) |
\(\begin{bmatrix} 1 & 0 & 0\\0 & -1 & 0\\0 & 0 & -1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}\) |
Across Origin (0,0,0) |
\(x' = -x\) \(y' = -y \) \(z' = -z \) |
\(\begin{bmatrix} -1 & 0 & 0\\0 & -1 & 0\\0 & 0 & -1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}\) |
Reflection Type | Equation Form | Matrix Form |
Across line x=c (c=constant) |
\(x' = 2c - x \) \(y' = y \) |
\(\begin{bmatrix} - 1 & 0 & 2c \\0 & 1 & 0 \\0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ 1\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1\end{bmatrix}\) |
Across line y=c (c=constant) |
\(x' = x\) \(y' = 2c-y \) |
\(\begin{bmatrix} 1 & 0 & 0 \\0 & -1 & 2c \\0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ 1\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1\end{bmatrix}\) |
Across Point \((o_x,o_y)\) |
\(x' = 2o_x - x\) \(y' = 2o_y - y \) |
\(\begin{bmatrix} -1 & 0 & 2o_x \\0 & -1 & 2o_y \\0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ 1\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1\end{bmatrix}\) |
Please note that when \( c, o_x,o_y \) are 0 these equations are similar to reflection with respect to coordinate axes or the origin |
Reflection Type | Equation Form | Matrix Form |
Across plane x=c (c=constant) |
\(x' = 2c - x \) \(y' = y \) \(z' = z \) |
\(\begin{bmatrix} - 1 & 0 & 0 & 2c \\0 & 1 & 0 & 0 \\0 & 0 & 1 & 0 \\0 & 0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 1\end{bmatrix}\) |
Across plane y=c (c=constant) |
\(x' = x\) \(y' = 2c-y \) \(z' = z \) |
\(\begin{bmatrix} 1 & 0 & 0 & 0\\0 & -1 & 0 & 2c \\0 & 0 & 1 & 0 \\0 & 0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 1\end{bmatrix}\) |
Across plane z=c (c=constant) |
\(x' = x\) \(y' = y \) \(z' = 2c-z \) |
\(\begin{bmatrix} 1 & 0 & 0 & 0 \\0 & 1 & 0 & 0 \\0 & 0 & -1 & 2c \\0 & 0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 1\end{bmatrix}\) |
Across Point \((o_x,o_y,o_z)\) |
\(x' = 2o_x - x\) \(y' = 2o_y - y \) \(z' = 2o_z - z \) |
\(\begin{bmatrix} -1 & 0 & 0 & 2o_x \\0 & -1 & 0 & 2o_y \\0 & 0 & -1 & 2o_z \\0 & 0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 1\end{bmatrix}\) |
Please note that when \( c, o_x,o_y,o_z \) are 0 these equations are similar to reflection with respect to coordinate planes or the origin |
Reflection Type | Matrix Form |
Across line \(ax + by=0\) | \(\begin{bmatrix} 1 - 2a^2 & -2ab\\-2ab & 1-2b^2 \end{bmatrix} \begin{bmatrix} x \\ y\end{bmatrix} = \begin{bmatrix} x' \\ y'\end{bmatrix}\) |
Across line \(ax + by + c=0\) | \(\begin{bmatrix} 1 - 2a^2 & -2ab & -2ac\\-2ab & 1-2b^2 & -2bc\\0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ 1\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1\end{bmatrix}\) |
Reflection Type | Matrix Form |
Across plane \(ax + by + cz=0\) | \(\begin{bmatrix} 1 - 2a^2 & -2ab & -2ac\\-2ab & 1-2b^2 & -2bc \\-2ac & -2bc & 1-2c^2 \end{bmatrix} \begin{bmatrix} x \\ y \\z\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z'\end{bmatrix}\) |
Across plane \(ax + by + cz + d=0\) | \(\begin{bmatrix} 1 - 2a^2 & -2ab & -2ac & -2ad\\-2ab & 1-2b^2 & -2bc & -2bd\\-2ac & -2bc & 1-2c^2 & -2cd \\0 & 0 & 0 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\z \\ 1\end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 1\end{bmatrix}\) |