Rotation Type | Transformation Matrix |
For counter clockwise rotation of a point |
\(\begin{bmatrix} tX^2 + c & tXY - sZ & tXZ + sY\\tXY + sZ & tY^2 + c & tYZ - sX\\tXZ - sY & tYZ + sX & tZ^2 + c\end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}
= \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}\)
|
For clockwise rotation of a point |
\( \begin{bmatrix} tX^2 + c & tXY + sZ & tXZ - sY\\tXY - sZ & tY^2 + c & tYZ + sX\\tXZ + sY & tYZ - sX & tZ^2 + c\end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix}
= \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}\)
|
Where \(c = \cos (\phi), s = \sin (\phi), t = 1-\cos (\phi)\), and \(X\) ,\(Y\) and \(Z\) are Components of the Unit Vector representing the Arbitary Axis |