Calculating Double Dot Product between 2 Dyads/Dyadics is same as Double Dot Product between 2 Matrices. For calculating Double Dot Product between 2 Dyads/Dyadics the Order of the both Dyads/Dyadics must be same.
The result of Double Dot Product between 2 Dyads/Dyadics is a Scalar Value.
Given a Dyad \(\overleftrightarrow{AB}\) formed of Vectors \(\vec{A}\) and \(\vec{B}\) and another Dyad \(\overleftrightarrow{CD}\) formed of Vectors \(\vec{C}\) and \(\vec{D}\), the following relations hold true
\(\overleftrightarrow{AB} : \overleftrightarrow{CD}= \overleftrightarrow{AB}^T : \overleftrightarrow{CD}^T=(\vec{A} \cdot \vec{C})(\vec{B} \cdot \vec{D})\) ...(For Normal Calculation of Double Dot Product)
Given a Dyadic Polynomial Matrix \(\overleftrightarrow{AB}\) formed by addition of Dyads \(\overleftrightarrow{A_1B_1}\), \(\overleftrightarrow{A_2B_2}\), ... , \(\overleftrightarrow{A_KB_K}\) and another Dyadic Polynomial Matrix \(\overleftrightarrow{CD}\) formed by addition of Dyads \(\overleftrightarrow{C_1D_1}\), \(\overleftrightarrow{C_2D_2}\), ... , \(\overleftrightarrow{C_ND_N}\), the following relations hold true
\(\overleftrightarrow{AB} : \overleftrightarrow{CD}= \overleftrightarrow{AB}^T : \overleftrightarrow{CD}^T=\sum_{i=1}^{K}\sum_{j=1}^{N}(\vec{A_i} \cdot \vec{C_j})(\vec{B_i} \cdot \vec{D_j})\) ...(For Normal Calculation of Double Dot Product)
In above equation \(\vec{A}_{\times}\) and \(\vec{B}_{\times}\) are Skew-Symmetric Matrices corresponding to Vectors \(\vec{A}\) and \(\vec{B}\) respectively.