S.No. | Type | Count Without Repeatition (only when \(N \geq R\)) | Count With Repetition |
---|---|---|---|
1. | Combination | \(C(N,R)=C(N,N-R)\) \(=\) \({\Large\frac{P(N,R)}{R!}}={\Large\frac{N!}{R!(N-R)!}}\) | \(C(N-1+R,R)\) \(=\) \(C(N-1+R,N-1)\) \(=\) \({\Large\frac{(N-1+R)!}{R!(N-1+R)!}}\) |
2. | Symmetry Independent Permutation | \(P(N,R)={\Large\frac{N!}{(N-R)!}}\) (\(N!\) when \(N=R\)) | \(N^R\) Calculated Using Generating Functions for Multinomial Expansion |
2. | Linear Symmetry Permutation | \({\Large\frac{P(N,R)}{2}}={\Large\frac{N!}{2(N-R)!}}\) (\({\Large\frac{N!}{2}}\) when \(N=R\) ) | \(\frac{N^R + N^{\frac{R}{2}}}{2}\) if \(R\) is Even \(\frac{N^R + N^{\frac{R+1}{2}}}{2}\) if \(R\) is Odd Calculated Using Linear Symmetry Generating Functions |
4. | Circular Symmetry Permutation | \({\Large\frac{P(N,R)}{R}}={\Large\frac{N!}{R(N-R)!}}\) (\((N-1)!\) when \(N=R\)) | Calculated Using Rotational Symmetry Generating Functions |
5. | Necklace Symmetry Permutation | \({\Large\frac{P(N,R)}{2R}}={\Large\frac{N!}{2R(N-R)!}}\) (\({\Large \frac{(N-1)!}{2}}\) when \(N=R\)) | Calculated Using Rotational & Reflectional Symmetry Generating Functions |