Rotation Type | Rotation Matrix | Rotation Equation |
For counter clockwise rotation of a point/object (clockwise rotation of equation / coordinate system) | \(\begin{bmatrix} x' \\ y' \end{bmatrix}=\begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}\) |
\(x' = x \cos(\phi) - y \sin(\phi)\) \(y' = y \cos(\phi) + x \sin(\phi)\) |
For clockwise rotation of a point/object (counter clockwise rotation of equation / coordinate system) | \(\begin{bmatrix} x' \\ y' \end{bmatrix}=\begin{bmatrix} \cos(\phi) & \sin(\phi) \\ -\sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}\) |
\(x' = x \cos(\phi) + y \sin(\phi)\) \(y' = y \cos(\phi) - x \sin(\phi)\) |
Rotation Type | Rotation Matrix |
For counter clockwise rotation of a point | \(\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}=\begin{bmatrix} tX^2 + c & tXY - sZ & tXZ + sY\\tXY + sZ & tY^2 + c & tYZ - sX\\tXZ - sY & tYZ + sX & tZ^2 + c\end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}\) |
For clockwise rotation of a point | \(\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}=\begin{bmatrix} tX^2 + c & tXY + sZ & tXZ - sY\\tXY - sZ & tY^2 + c & tYZ + sX\\tXZ + sY & tYZ - sX & tZ^2 + c\end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix}\) |
Where c = cos (\(\phi\)), s = sin (\(\phi\)), t = 1-cos (\(\phi\)), and <X,Y,Z> is the unit vector representing the arbitary axis |
Rotation Type | Rotation Matrix | Rotation Equation |
For counter clockwise rotation of a point/object (clockwise rotation of equation / coordinate system) | \(\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & -\sin(\phi) \\0 & \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}\) |
\(x' = x\) \(y' = y \cos(\phi) - z \sin(\phi)\) \(z' = z \cos(\phi) + y \sin(\phi)\) |
For clockwise rotation of a point/object (counter clockwise rotation of equation / coordinate system) | \(\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & \sin(\phi) \\0 & -\sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}\) |
\(x' = x\) \(y' = y \cos(\phi) + z \sin(\phi)\) \(z' = z \cos(\phi) - y \sin(\phi)\) |
Rotation Type | Rotation Matrix | Rotation Equation |
For counter clockwise rotation of a point/object (clockwise rotation of equation / coordinate system) | \(\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}=\begin{bmatrix}\cos(\phi) & 0 & \sin(\phi) \\0 & 1 & 0 \\ -\sin(\phi) & 0 & \cos(\phi) \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}\) |
\(x' = x \cos(\phi) + z \sin(\phi)\) \(y' = y \) \(z' = z \cos(\phi) - x \sin(\phi)\) |
For clockwise rotation of a point/object (counter clockwise rotation of equation / coordinate system) | \(\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}=\begin{bmatrix}\cos(\phi) & 0 & -\sin(\phi) \\0 & 1 & 0 \\ \sin(\phi) & 0 & \cos(\phi) \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}\) |
\(x' = x \cos(\phi) - z \sin(\phi)\) \(y' = y\) \(z' = z \cos(\phi) + x \sin(\phi)\) |
Rotation Type | Rotation Matrix | Rotation Equation |
For counter clockwise rotation of a point/object (clockwise rotation of equation / coordinate system) | \(\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}=\begin{bmatrix} \cos(\phi) & -\sin(\phi) & 0 \\ \sin(\phi) & \cos(\phi) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}\) |
\(x' = x \cos(\phi) - y \sin(\phi)\) \(y' = y \cos(\phi) + x \sin(\phi)\) \(z' = z\) |
For clockwise rotation of a point/object (counter clockwise rotation of equation / coordinate system) | \(\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}=\begin{bmatrix} \cos(\phi) & \sin(\phi) & 0 \\-\sin(\phi) & \cos(\phi) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}\) |
\(x' = x \cos(\phi) + y \sin(\phi)\) \(y' = y \cos(\phi) - x \sin(\phi)\) \(z' = z\) |