mail
mail@stemandmusic.in
call
+91-9818088802
Donate
Scalar Triple Product
The
Scalar Triple Product
of 3
3-Dimensional Vectors
\(\vec{A}\), \(\vec{B}\) and \(\vec{C}\) is calculated as follows
\(\vec{A}\cdot(\vec{B}\times\vec{C}) = [\vec{A}\hspace{.1cm}\vec{B}\hspace{.1cm}\vec{C}]=\begin{vmatrix} A_x & A_y & A_z\\ B_x & B_y & B_z\\ C_x & C_y & C_z \end{vmatrix}=\begin{vmatrix} A_x & B_x & C_x\\ A_y & B_y & C_y\\ A_z & B_z & C_z \end{vmatrix} \)
where
\(\vec{A}= A_x\hat{\textbf{i}} + A_y\hat{\textbf{j}} + A_z\hat{\textbf{k}}\)
\(\vec{B}= B_x\hat{\textbf{i}} + B_y\hat{\textbf{j}} + B_z\hat{\textbf{k}}\)
\(\vec{C}= C_x\hat{\textbf{i}} + C_y\hat{\textbf{j}} + C_z\hat{\textbf{k}}\)
Following are
Properties of Scalar Triple Product
The
Scalar Triple Product
of 3 Vectors gives the
Signed Volume of Parallelopiped Bound by the 3 Vectors
The Value of the Scalar Triple Product Does Not Change if the Dot and the Cross Products are Interchanged
as shown below
\(\vec{A}\cdot(\vec{B}\times\vec{C}) = (\vec{A}\times\vec{B})\cdot\vec{C}\hspace{.6cm}\Rightarrow [\vec{A}\hspace{.1cm}\vec{B}\hspace{.1cm}\vec{C}] = [\vec{C}\hspace{.1cm}\vec{A}\hspace{.1cm}\vec{B}] \)
The Value of the Scalar Triple Product Does Not Change on Cyclic Permutation of the Vectors
as shown below
\(\vec{A}\cdot(\vec{B}\times\vec{C}) = \vec{C}\cdot(\vec{A}\times\vec{B}) = \vec{B}\cdot(\vec{C}\times\vec{A})\)
\(\Rightarrow [\vec{A}\hspace{.1cm}\vec{B}\hspace{.1cm}\vec{C}] = [\vec{C}\hspace{.1cm}\vec{A}\hspace{.1cm}\vec{B}] = [\vec{B}\hspace{.1cm}\vec{C}\hspace{.1cm}\vec{A}] \)
The Sign of Value of the Scalar Triple Product Changes on Non-Cyclic Permutation of the Vectors
as shown below
\(\vec{A}\cdot(\vec{B}\times\vec{C}) = -\vec{A}\cdot(\vec{C}\times\vec{B}) = -\vec{C}\cdot(\vec{B}\times\vec{A}) = -\vec{B}\cdot(\vec{A}\times\vec{C})\)
\(\Rightarrow [\vec{A}\hspace{.1cm}\vec{B}\hspace{.1cm}\vec{C}] = -[\vec{A}\hspace{.1cm}\vec{C}\hspace{.1cm}\vec{B}] = -[\vec{C}\hspace{.1cm}\vec{B}\hspace{.1cm}\vec{A}] = -[\vec{B}\hspace{.1cm}\vec{A}\hspace{.1cm}\vec{C}] \)
The Value of Scalar Triple Product is 0 if any 2 Vectors are Parallel or Same, or if the 3 Vectors are Co-Planar (i.e. they lie on the same Plane)
Related Topics
Vector Triple Product
,
Scalar Quad Product
,
Vector Quad Product
,
Introduction to Vector Algebra
Home
|
TOC
|
Calculators
©
Invincible IDeAS
. All Rights Reserved