mail
mail@stemandmusic.in
call
+91-9818088802
Donate
Vector Quad Product
The
Vector Quad Product
of 4
3-Dimensional Vectors
\(\vec{A}\), \(\vec{B}\), \(\vec{C}\) and \(\vec{D}\) is calculated as follows
\((\vec{A} \times \vec{B}) \times (\vec{C} \times \vec{D})=((\vec{A} \times \vec{B})\cdot\vec{D})\vec{C} - ((\vec{A} \times \vec{B})\cdot\vec{C})\vec{D} =[\vec{A}\hspace{.1cm}\vec{B}\hspace{.1cm}\vec{D}]\hspace{.1cm}\vec{C}-[\vec{A}\hspace{.1cm}\vec{B}\hspace{.1cm}\vec{C}]\hspace{.1cm}\vec{D}\)
Following gives the
Derivation of the Formula for Vector Quad Product
Let \(\vec{P}= \vec{A} \times \vec{B}\) ...(1)
\(\Rightarrow(\vec{A} \times \vec{B}) \times (\vec{C} \times \vec{D})=\vec{P} \times (\vec{C} \times \vec{D})\)
\(\Rightarrow(\vec{A} \times \vec{B}) \times (\vec{C} \times \vec{D})=(\vec{P} \cdot\vec{D})\vec{C} - (\vec{P} \cdot\vec{C})\vec{D})\) ...(2)
Substituting the value of \(\vec{P}\) from equation (1) in equation (2) we get
\((\vec{A} \times \vec{B}) \times (\vec{C} \times \vec{D})=((\vec{A} \times \vec{B})\cdot\vec{D})\vec{C} - ((\vec{A} \times \vec{B})\cdot\vec{C})\vec{D} =[\vec{A}\hspace{.1cm}\vec{B}\hspace{.1cm}\vec{D}]\hspace{.1cm}\vec{C}-[\vec{A}\hspace{.1cm}\vec{B}\hspace{.1cm}\vec{C}]\hspace{.1cm}\vec{D}\)
Related Topics
Scalar Triple Product
,
Scalar Quad Product
,
Vector Triple Product
,
Introduction to Vector Algebra
Home
|
TOC
|
Calculators
©
Invincible IDeAS
. All Rights Reserved