mail  mail@stemandmusic.in
    
call  +91-9818088802
Donate

Vector Quad Product

  1. The Vector Quad Product of 4 3-Dimensional Vectors \(\vec{A}\), \(\vec{B}\), \(\vec{C}\) and \(\vec{D}\) is calculated as follows

    \((\vec{A} \times \vec{B}) \times (\vec{C} \times \vec{D})=((\vec{A} \times \vec{B})\cdot\vec{D})\vec{C} - ((\vec{A} \times \vec{B})\cdot\vec{C})\vec{D} =[\vec{A}\hspace{.1cm}\vec{B}\hspace{.1cm}\vec{D}]\hspace{.1cm}\vec{C}-[\vec{A}\hspace{.1cm}\vec{B}\hspace{.1cm}\vec{C}]\hspace{.1cm}\vec{D}\)
  2. Following gives the Derivation of the Formula for Vector Quad Product

    Let \(\vec{P}= \vec{A} \times \vec{B}\)    ...(1)

    \(\Rightarrow(\vec{A} \times \vec{B}) \times (\vec{C} \times \vec{D})=\vec{P} \times (\vec{C} \times \vec{D})\)

    \(\Rightarrow(\vec{A} \times \vec{B}) \times (\vec{C} \times \vec{D})=(\vec{P} \cdot\vec{D})\vec{C} - (\vec{P} \cdot\vec{C})\vec{D})\)    ...(2)

    Substituting the value of \(\vec{P}\) from equation (1) in equation (2) we get

    \((\vec{A} \times \vec{B}) \times (\vec{C} \times \vec{D})=((\vec{A} \times \vec{B})\cdot\vec{D})\vec{C} - ((\vec{A} \times \vec{B})\cdot\vec{C})\vec{D} =[\vec{A}\hspace{.1cm}\vec{B}\hspace{.1cm}\vec{D}]\hspace{.1cm}\vec{C}-[\vec{A}\hspace{.1cm}\vec{B}\hspace{.1cm}\vec{C}]\hspace{.1cm}\vec{D}\)
Related Topics
Scalar Triple Product,    Scalar Quad Product,    Vector Triple Product,    Introduction to Vector Algebra
© Invincible IDeAS. All Rights Reserved