mail
mail@stemandmusic.in
call
+91-9818088802
Donate
Vector Triple Product
The
Vector Triple Product
of 3
3-Dimensional Vectors
\(\vec{A}\), \(\vec{B}\) and \(\vec{C}\) is calculated as follows
\(\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A}\cdot\vec{C})\vec{B}-(\vec{A}\cdot\vec{B})\vec{C}\)
\((\vec{A} \times \vec{B}) \times \vec{C} = (\vec{A}\cdot\vec{C})\vec{B}-(\vec{B}\cdot\vec{C})\vec{A}\)
Following gives the
Derivation of Formula of Vector Triple Product
\(\vec{B}\times\vec{C} \Rightarrow \begin{vmatrix} i & j & k \\ B_x & B_y & B_z \\ C_x & C_y & C_z\end{vmatrix} \)
\(\Rightarrow (B_yC_z-B_zC_y)\hat{\textbf{i}} - (B_xC_z-B_zC_x)\hat{\textbf{j}} + (B_xC_y-B_yC_x)\hat{\textbf{k}}\)
Then
\(\vec{A} \times (\vec{B} \times \vec{C}) = \begin{vmatrix} i & j & k \\ A_x & A_y & A_z \\ (B_yC_z-B_zC_y) & (B_zC_x-B_xC_z) & (B_xC_y-B_yC_x)\end{vmatrix} \)
The \(x\) component of \(\vec{A} \times (\vec{B} \times \vec{C})\) is given as
\({(\vec{A} \times (\vec{B} \times \vec{C}))}_x=A_y(B_xC_y-B_yC_x) - A_z(B_zC_x-B_xC_z)=A_yB_xC_y - A_yB_yC_x - A_zB_zC_x + A_zB_xC_z \)
Adding and Subtracting \(A_xB_xC_x\) to the above term we get
\(A_yB_xC_y - A_yB_yC_x - A_zB_zC_x + A_zB_xC_z + A_xB_xC_x - A_xB_xC_x\)
After rearranging and grouping we get the \(x\) component of \(\vec{A} \times (\vec{B} \times \vec{C})\) as
\(B_x(A_xC_x + A_yC_y + A_zC_z) - C_x(A_xC_x + A_yC_y + A_zC_z)\)
\(\Rightarrow {(\vec{A} \times (\vec{B} \times \vec{C}))}_x=(\vec{A}\cdot\vec{C})B_x - (\vec{A}\cdot\vec{B})C_x\) ...(1)
Similarly, the \(y\) and \(z\) component of \(\vec{A} \times (\vec{B} \times \vec{C})\) can are obtained as
\({(\vec{A} \times (\vec{B} \times \vec{C}))}_y=(\vec{A}\cdot\vec{C})B_y - (\vec{A}\cdot\vec{B})C_y\) ...(2)
\({(\vec{A} \times (\vec{B} \times \vec{C}))}_z=(\vec{A}\cdot\vec{C})B_z - (\vec{A}\cdot\vec{B})C_z\) ...(3)
Adding (1), (2) & (3) we get
\(\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A}\cdot\vec{C})\vec{B}-(\vec{A}\cdot\vec{B})\vec{C}\)
Following are
Properties of Vector Triple Product
For any given 3 Vectors \(\vec{A}\), \(\vec{B}\) and \(\vec{C}\) the following identity of
Vector Triple Product
holds true
\(\vec{A} \times (\vec{B} \times \vec{C}) + \vec{C} \times (\vec{A} \times \vec{B}) + \vec{B} \times (\vec{C} \times \vec{A}) = 0\)
\(\Rightarrow (\vec{A}\cdot\vec{C})\vec{B}-(\vec{A}\cdot\vec{B})\vec{C} + (\vec{C}\cdot\vec{B})\vec{A}-(\vec{C}\cdot\vec{A})\vec{B} + (\vec{B}\cdot\vec{A})\vec{C}-(\vec{B}\cdot\vec{C})\vec{A} = 0\)
The
Parenthesis in the Vector Triple Product is generally Not Interchangable
. Instead the following identity is true (based on the above identity)
\((\vec{A} \times \vec{B})\times\vec{C} = \vec{A} \times (\vec{B} \times \vec{C}) + \vec{B} \times (\vec{C} \times \vec{A})=(\vec{A}\cdot\vec{C})\vec{B}-(\vec{B}\cdot\vec{C})\vec{A} \)
The
Parenthesis in the Vector Triple Product is Interchangable only if 2 Vectors are Same
(once again, based on the above 2 identities).
\(\vec{A} \times (\vec{B}\times\vec{A}) = (\vec{A}\times\vec{B})\times\vec{A}=(\vec{A}\cdot\vec{A})\vec{B}-(\vec{A}\cdot\vec{B})\vec{A} \)
If Vectors \(\vec{A}\) and \(\vec{B}\) are Perpendicular then
\(\vec{A} \times (\vec{B}\times\vec{A}) = (\vec{A}\times\vec{B})\times\vec{A}=(\vec{A}\cdot\vec{A})\vec{B}\)
Related Topics
Scalar Triple Product
,
Scalar Quad Product
,
Vector Quad Product
,
Introduction to Vector Algebra
Home
|
TOC
|
Calculators
©
Invincible IDeAS
. All Rights Reserved