mail  mail@stemandmusic.in
    
call  +91-9818088802
Donate

Derivation of Reflection Formula Across a Line in 2D/Plane in 3D/Hyper-Plane in Higher Dimensions

  1. The following gives the Derivation of Formula of Reflection of a Point \(C\) having Position Vector \(\vec{C}\) across any Line in 2D (or across any Plane in 3D or across any Hyper-Plane in Higher Dimensions) having Direction Ratio of Normal \(\vec{A}\) containing a Point \(B\) having Position Vector \(\vec{B}\):

    In Figure given above we have

    \(\vec{A}\)=Direction Ratio of the Normal , \(\vec{B}\)=Position Vector any Point \(B\) on the Line/Plane/Hyper-Plane,

    \(\vec{C}\)=Position Vector of Point \(C\) , \(\vec{C_R}\)=Position Vector of Reflected Point \(C_R\)

    \(\vec{CB}=\vec{C}-\vec{B}\), \(\vec{CB}_{||}\)=Projection of Vector \(\vec{CB}\) on Normal, \(\vec{CB}_{\perp}\)=Rejection of Vector \(\vec{CB}\) from the Normal

    \(\vec{C_RB}=\vec{C_R}-\vec{B}\), \(\vec{C_RB}_{||}\)=Projection of Vector \(\vec{C_RB}\) on Normal, \(\vec{C_RB}_{\perp}\)=Rejection of Vector \(\vec{C_RB}\) from the Normal

    Now,

    \( \vec{CB}=\vec{CB}_{||} + \vec{CB}_{\perp}\hspace{.6cm}\Rightarrow \vec{CB}_{||}= \vec{CB} - \vec{CB}_{\perp}\)   ...(1)

    Also,

    \( \vec{C_RB}=\vec{C_RB}_{||} + \vec{C_RB}_{\perp}\hspace{.6cm}\Rightarrow \vec{C_RB}_{||}= \vec{C_RB} - \vec{C_RB}_{\perp}\)   ...(2)

    But Since \(\vec{CB}_{\perp}=\vec{C_RB}_{\perp}\), therefore \(\vec{C_RB}_{||}= \vec{C_RB} - \vec{CB}_{\perp}\)   ...(3)

    Also \(\vec{C_RB}_{||}=-\vec{CB}_{||}\)   (Vectors of Same Length but in Opposite Direction)...(4)

    From equations (1), (3) and (4) we have

    \(\vec{C_RB} - \vec{CB}_{\perp}= -(\vec{CB} - \vec{CB}_{\perp})\)

    \(\Rightarrow \vec{C_RB} - \vec{CB}_{\perp}= -\vec{CB} + \vec{CB}_{\perp}\)

    \(\Rightarrow \vec{C_RB} = 2\vec{CB}_{\perp} - \vec{CB}\)

    \(\Rightarrow \vec{C_RB}= 2(\vec{CB}-\vec{CB}_{||}) - \vec{CB}\)

    \(\Rightarrow \vec{C_RB}= \vec{CB}-2\vec{CB}_{||}\)   ...(5)

    \(\Rightarrow \vec{C_R}-\vec{B} = \vec{C}-\vec{B}-2\vec{CB}_{||}\)

    \(\Rightarrow \vec{C_R} = \vec{C}-2\vec{CB}_{||}\)   ...(6)

    \(\Rightarrow \vec{C_R} = \vec{C} - 2(\frac{(\vec{A} \cdot \vec{CB})\vec{A}}{{|\vec{A}|}^2})\)   ...(7)

    Please Note that equations (6) and (7) give the formula for Reflection in 2D, 3D and Higher Dimensions.
Related Topics and Calculators
Reflection,    Derivation of Reflection Formula Across a Line,    Projection of Point on a Line/Plane/Hyper-Plane,    Distance of Point from a Line/Plane/Hyper-Plane
© Invincible IDeAS. All Rights Reserved