mail  mail@stemandmusic.in
    
call  +91-9818088802
Donate

Derivation of Reflection Formula Across a Line

  1. The following gives the Derivation of Formula of Reflection in 2D, 3D or Higher Dimensions of a Point \(C\) having Position Vector \(\vec{C}\) across any Line having Direction Ratio \(\vec{A}\) containing a Point \(B\) having Position Vector \(\vec{B}\):

    In Figure given above we have

    \(\vec{A}\)=Direction Ratio of the Line , \(\vec{B}\)=Position Vector any Point \(B\) on the Line,

    \(\vec{C}\)=Position Vector of Point \(C\), \(\vec{C_P}\)=Position Vector of Projected Point \(C_P\) on the Line , \(\vec{C_R}\)=Position Vector of Reflected Point \(C_R\)

    \(\vec{CB}=\vec{C}-\vec{B}\), \(\vec{CB}_{||}\)=Projection of Vector \(\vec{CB}\) on Line, \(\vec{CB}_{\perp}\)=Rejection of Vector \(\vec{CB}\) from the Line

    \(\vec{C_RB}=\vec{C_R}-\vec{B}\), \(\vec{C_RB}_{||}\)=Projection of Vector \(\vec{C_RB}\) on Line, \(\vec{C_RB}_{\perp}\)=Rejection of Vector \(\vec{C_RB}\) from the Line

    Now,

    \( \vec{CB}=\vec{CB}_{||} + \vec{CB}_{\perp}\hspace{.6cm}\Rightarrow \vec{CB}_{\perp}= \vec{CB} - \vec{CB}_{||}\)   ...(1)

    Also,

    \( \vec{C_RB}=\vec{C_RB}_{||} + \vec{C_RB}_{\perp}\hspace{.6cm}\Rightarrow \vec{C_RB}_{\perp}= \vec{C_RB} - \vec{C_RB}_{||}\)   ...(2)

    But Since \(\vec{CB}_{||}=\vec{C_RB}_{||}\), therefore \(\vec{C_RB}_{\perp}= \vec{C_RB} - \vec{CB}_{||}\)   ...(3)

    Also \(\vec{C_RB}_{\perp}=-\vec{CB}_{\perp}\)   (Vectors of Same Length but in Opposite Direction)...(4)

    From equations (1), (3) and (4) we have

    \(\vec{C_RB} - \vec{CB}_{||}= -(\vec{CB} - \vec{CB}_{||})\)

    \(\Rightarrow \vec{C_RB} - \vec{CB}_{||}= -\vec{CB} + \vec{CB}_{||}\)

    \(\Rightarrow \vec{C_RB} = 2\vec{CB}_{||} - \vec{CB}\)   ...(5)

    \(\Rightarrow \vec{C_R}-\vec{B} = 2\vec{CB}_{||} - (\vec{C}- \vec{B})\)

    \(\Rightarrow \vec{C_R} = 2\vec{CB}_{||} -\vec{C}+ 2\vec{B}\)

    \(\Rightarrow \vec{C_R} = 2(\vec{B} + \vec{CB}_{||}) -\vec{C}\)   ...(6)

    Also From Fig. (1) we have

    \(\vec{C}=\vec{C_P} + \vec{CB}_{\perp}\)   (Using Triangle Law of Vectors)\(\hspace{.6cm}\Rightarrow \vec{C_P}= \vec{C} - \vec{CB}_{\perp}\)   ...(7)

    And \(\vec{C_P}=\vec{B} + \vec{CB}_{||}\)   (Using Triangle Law of Vectors)...(8)

    From equations (7), (8) we have

    \(\vec{B} + \vec{CB}_{||}=\vec{C} - \vec{CB}_{\perp}\)   ...(9)

    Putting the value of \(\vec{B} + \vec{CB}_{||}\) from equation (9) in equation (6) we have

    \(\vec{C_R} = 2(\vec{C} - \vec{CB}_{\perp}) -\vec{C}\)

    \(\Rightarrow \vec{C_R} = \vec{C} - 2\vec{CB}_{\perp}\)   ...(10)

    \(\Rightarrow \vec{C_R} = \vec{C} - 2(\vec{CB}-\vec{CB}_{||})\)   ...(11)

    \(\Rightarrow \vec{C_R} = \vec{C} - 2 (\vec{CB} - \frac{(\vec{A} \cdot \vec{CB})\vec{A}}{{|\vec{A}|}^2})\)   ...(12)

    \(\Rightarrow \vec{C_R}=\vec{C} - 2\frac{\vec{A} \times (\vec{CB}\times \vec{A})}{{|\vec{A}|}^2}=\vec{C} - 2\frac{(\vec{A} \times \vec{CB})\times \vec{A}}{{|\vec{A}|}^2}\)   ...(13)

    Please Note that equations (6), (10), (11) and (12) give the formula for Reflection in 2D, 3D and Higher Dimensions.

    Since Cross Product is only applicable in 2D and 3D Vectors, equation (13) gives the formula for Reflection in 2D and 3D only
    .
Related Topics and Calculators
Reflection,    Derivation of Reflection Formula Across a Line in 2D/Plane in 3D/Hyper-Plane in Higher Dimensions,    Projection of Point on a Line/Plane/Hyper-Plane,    Distance of Point from a Line/Plane/Hyper-Plane
© Invincible IDeAS. All Rights Reserved